
Multiple precision

integer arithmetic

and

public key

encryption





Multiple precision

integer arithmetic

and

public key

encryption

Mathias Engan

2009-10-13



c© 2009, M. Engan. All rights reserved.

First edition 2009-10-13

ISBN 978-1-4452-1122-0



To Axel, our son. And to Katarina. Thank you for your patience.





Contents

Contents vii

List of Figures ix

List of Tables xi

1 Preface 1

2 Mathematical background 3
2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Euclid’s theorems . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 The fundamental theorem of arithmetic . . . . . . . . . . 11
2.5 Modular arithmetic . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Fermat’s little theorem . . . . . . . . . . . . . . . . . . . . 15
2.7 Euler’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Computational Complexity 23
3.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Turing machine . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Elementary arithmetic 33
4.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Multiple precision arithmetic . . . . . . . . . . . . . . . . 39

vii



4.4 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Other operations 89
5.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Even and odd . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Bit operations . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Signed addition and subtraction . . . . . . . . . . . . . . . 101
5.7 Greatest common divisor . . . . . . . . . . . . . . . . . . 105
5.8 Modular exponentiation . . . . . . . . . . . . . . . . . . . 117
5.9 Scratch space . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.10 Error handling . . . . . . . . . . . . . . . . . . . . . . . . 123
5.11 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Random numbers 127
6.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3 Harvesting entropy . . . . . . . . . . . . . . . . . . . . . . 136
6.4 Random number generator . . . . . . . . . . . . . . . . . 140
6.5 The Blum-Blum-Shub generator . . . . . . . . . . . . . . 143

7 Finding prime numbers 149
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Prime number theorem . . . . . . . . . . . . . . . . . . . . 155
7.3 Probabalistic primality tests . . . . . . . . . . . . . . . . . 157
7.4 Generating large prime numbers . . . . . . . . . . . . . . 163

8 RSA 167
8.1 RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 RSA Implementation . . . . . . . . . . . . . . . . . . . . . 172

Bibliography 181

Index 185



List of Figures

4.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Representation, size and length . . . . . . . . . . . . . . . . . 39
4.3 Result zi of primitive addition (xi)b + (yi)b = (czi)b in base

b = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Long addition (Z = X + Y ). . . . . . . . . . . . . . . . . . . 41
4.5 Addition registers. . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Sum (S) and terms (X and Y ). . . . . . . . . . . . . . . . . . 44
4.7 Result zi of primitive subtraction (xi)b − (yi)b = (czi)b in

base b = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 Long subtraction (Z = X − Y ). . . . . . . . . . . . . . . . . . 48
4.9 Subtraction registers. . . . . . . . . . . . . . . . . . . . . . . . 49
4.10 Result zi of primitive multiplication xi · yi = (czi)b in base

b = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.11 Long multiplication (Z = X · y0). . . . . . . . . . . . . . . . . 54
4.12 Long multiplication (Z = X · Y ). . . . . . . . . . . . . . . . . 55

4.13 Primitive multiplication base b = 2
w
2 . . . . . . . . . . . . . . 58

4.14 Multiplication registers. mi and m′j represent w bit memory
cells and w

2
bit cells respectively. . . . . . . . . . . . . . . . . 59

4.15 Quotient qi of primitive division bxi/yic = qi in base b = 10 . 64
4.16 Remainder ri of primitive division xi − bxi/yic = ri in base

b = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.17 Long division (X = QY +R). . . . . . . . . . . . . . . . . . . 65
4.18 Long division example. . . . . . . . . . . . . . . . . . . . . . . 70
4.19 Division registers. . . . . . . . . . . . . . . . . . . . . . . . . 71
4.20 Addn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.21 Mulsubn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



4.22 Evaluating estimated quotient. . . . . . . . . . . . . . . . . . 86
4.23 First comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 87



List of Tables

3.1 Compute [0 1 0 1 0 1 . . . ] . . . . . . . . . . . . . . . . . . . . 26

5.1 Multiple precision comparison. . . . . . . . . . . . . . . . . . 89
5.2 Comparison and equality operators. . . . . . . . . . . . . . . 91
5.3 Signed addition . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Signed subtraction . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5 Extended gcd algorithm. . . . . . . . . . . . . . . . . . . . . . 111

6.1 Exclusive-or. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xi





Chapter 1

Preface

This started because I wanted to know how public key encryption works.
A safe way to learn and to understand is to implement. I immediately
realized the importance of multiple precision integer arithmetic. Fortu-
nately, I did not realize the complexity of division.

I started reading about public key encryption, and more specifically,
RSA, in early december 2008. Early in january 2009 I happily wrote
the first lines of code, oblivious to the size of my pet project. When the
code was basically done, I started documenting it. It grew into a book.
This book.

I have spent hours of my precious spare time. During my parental
leave I used the time when our son was napping to work on this project.
And the late nights when the rest of the family slept. Writing code
and seeing it run gives me satisfaction. That positive feedback kept me
going. I hope more good comes out of this work.

The main part of this book is chapter 4, about the elementary arith-
metic operations addition, subtraction, multiplication and divison. I
present a clean and portable implementation of multiple precision arith-
metic. In chapter 5 I discuss other multiple precision operations, such
as comparison, bit operations, greatest common divisor, signed addition
and subtraction and exponentiation. All necessary for implementation
of RSA.

In chapters 6 and 7 I discuss random number generation and prime
number generation. We need them both. Random numbers are a founda-
tion of modern cryptography and large prime numbers are a cornerstone

1



2 CHAPTER 1. PREFACE

in many modern cryptosystems. The RSA cryptosystem is discussed in
chapter 8 and constitutes the final chapter of the book.

The two first chapters, chapters 2 and 3 is an attempt to make this
book completley self contained. My goal has been to include all that is
necessary, but not much else, to understand and implement public key
cryptography.

A goal of mine has been to make the implementation self contained,
with no, or at least very few, dependencies on external libraries. The
routines presented in this text are sufficient for a working implementation
of RSA. With one exception. Entropy. A real world implementation
must provide, the inherently non-portable, entropy harvesting.



Chapter 2

Mathematical background

This is not a mathematics textbook. It is a book about multiple precision
arithmetic and public key encryption. However, the goal is to make this
text self contained. Thus we present the definitions and theorems which
we will make use of in the following chapters.

2.1 Prerequisites

We begin with one of the most basic concepts. The set. Using the set
as a foundation we can derive nearly all of mathematics. A set is a
collection of distinct objects. Georg Cantor defined a set as

By a set we mean any collection M into a whole of definite,
distinct objects m (which are called the elements of M) of
our perception or of our thought.

The elements of a set can be anything, however, every element of a set
must be unique, i.e. no two members can be the same. Here we provide
no formal definition of the set, but list some of the properties of a set.

Definition 1. Set.

These are some important characteristics of a set:

1. A set S is made up of elements. If a is an element of S
we write a ∈ S.

3



4 CHAPTER 2. MATHEMATICAL BACKGROUND

2. There is exactly one set with no elements, the empty
set which we denote by ∅.

3. We can describe a set either by giving a characteriz-
ing property of the elements or by listing the elements.
We usually describe a set either by listing the elements
within curly braces, such as {a, b, c} or by providing a
property, such as {x|P (x)} which is read ”the set of all
x such that P (x) is true.

4. A set is well defined, so that if S is a set and a is some
object then a is either in S, a ∈ S or a is not in S,
a 6∈ S.

We continue with the definition of a subset and a partition. A subset
is a set where all members are also members of a (possibly) larger set.
A partitioning relation forms distinct subsets, cells, of a set, such that
an element is a member of one cell.

Definition 2. Subset.

A set B is a subset of A if every element of B is in A which
we write B ⊆ A. We write B ⊂ A if B ⊆ A but B 6= A.

Definition 3. Partition of a set.

A partition of a set is a decomposition of the set into subsets
such that every element of the set is in one and only one of
the subsets which we call cells.

Theorem 1. Partitioning relation.

S is a nonempty set and ∼ is a relation between elements of
S satisfying:

1. a ∼ a (reflexive).

2. if a ∼ b then b ∼ a (symmetric).

3. if a ∼ b and b ∼ c then a ∼ c (transitive).

The relation ∼ partitions the set S such that ā = {x ∈ S|x ∼
a} is the cell containing a, ∀a ∈ S.



2.2. INTEGERS 5

Proof. a ∈ S and then a ∈ ā (reflexive). So a is in at least one cell.
Now, assume a is also in b̄ and let x ∈ ā, then x ∼ a, but a ∈ b̄ so a ∼ b,
then by transitivity x ∼ b so x ∈ b̄ thus ā ⊆ b̄. Let y ∈ b̄ then y ∼ b, but
a ∈ b̄ so a ∼ b and by symmetry b ∼ a and transitivity y ∼ a so y ∈ ā
and thus b̄ ⊆ ā. We now have ā ⊆ b̄ and b̄ ⊆ ā so ā = b̄.

Definition 4. Equivalence relation.

A relation ∼ on a set S satisfying the reflexive, symmet-
ric and transitive properties is an equivalence relation on S.
Each cell ā in the partition given by an equivalence relation
is an equivalence class.

We will see later that the modulo operation partitions the integers
into cells and is an equivalence relation.

2.2 Integers

In this text we will almost exclusively be concerned with integers. In
fact, most of our work will be focused on positive integers. We assume
the reader is familiar with the basic arithmetic operations; addition,
subtraction, multiplication and division. In any case we present some
important definitions and theorems regarding division and divisibility
that will be refered to later.

Definition 5. The set of integers.

The set Z is the set of integers:

Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Definition 6. Well ordering principle

In every nonempty set of positive integers there is a smallest
element.

Definition 7. Divisor.

For a, b ∈ Z, a divides b, a is a divisor of b or a is a factor of
b if ∃c ∈ Z such that b = ac. If a divides b we write a|b.



6 CHAPTER 2. MATHEMATICAL BACKGROUND

Theorem 2. Properties of divisibility.

For ∀a, b, c ∈ Z we have:

1. a|a.

2. If a|b and b|a then a = ±b.
3. If a|b and b|c then a|c.
4. If a|b and b|c then ∀x, y ∈ Z, a|(bx+ cy).

5. If ab|c then a|c and b|c.

Proof. We show each property:

1. If a|a then ∃i ∈ Z such that ia = a. The only possibility for i is 1
so a divides a.

2. Since a|b ∃i ∈ Z such that ia = b and since b|a ∃j ∈ Z such that
jb = a. Substituting gives ijb = b and ij must be 1. Substituting
for b gives jia = a and ji must be 1. The only possibilities for i
and j are 1 or −1, thus a = ±b.

3. If a|b then ∃i ∈ Z such that ia = b and if b|c then ∃j ∈ Z such that
jb = c, since ia = b we have j(ia) = c or (ji)a = c which implies
a|c.

4. From 3 we know that if a|b and b|c then a|c. Since a|b ∃i ∈ Z such
that ia = b and since b|c ∃j ∈ Z such that jb = c. Now we can
write bx + cy = iax + jby = iax + jiaxy = a(ix + jixy) which
implies a|(bx+ cy).

5. If ab|c the ∃k ∈ Z such that iab = c, then (ib)a = c and a|c, also,
(ia)b = c and b|c.

Definition 8. Greatest common divisor.

d ∈ Z, d > 0 is the greatest common divisor of a, b ∈ Z if:

1. d is a common divisor of a and b such that d|a and d|b.
2. whenever c|a and c|b then c|d.

We write d = gcd(a, b) and gcd(0, 0) = 0.



2.2. INTEGERS 7

Theorem 3. Division algorithm for integers.

For a, b, d ∈ Z where d 6= 0 ∃q, r ∈ Z where q and r are
unique such that a = qd+ r and 0 ≤ r ≤ |d|.

Proof. We show existence and uniqueness.

1. To show existence we consider the set R = {a− nd|n ∈ Z}. R has
at least one nonnegative member.

a) If d > 0 then ∃n ∈ Z, n ≥ 0 such that dn ≥ −a, that is
a− d(−n) = a+ dn ≥ 0.

b) If d < 0 then −d > 0 and ∃n ∈ Z, n ≥ 0 such that (−d)n ≥
−a, that is a− dn ≥ 0.

So R contains a nonnegative integer. By the well ordering principle
R contains a least nonnegative integer r, let q = (a − r)/d then
q, r ∈ Z and a = qd+ r.

r > 0 which we know from the definition of R, suppose that r ≥ |d|,
then since d 6= 0, r > 0 and d > 0 or d < 0 we have:

a) If d > 0 then r ≥ d implies a− qd ≥ −d thus a− qd− d ≥ 0
and a − (q + 1)d ≥ 0. Now a − (q + 1)d is in R and since
a−(q+1)d = r−d and d > 0 we must have (q+1)d < r which
contradicts the assumption that r is the least nonnegative
number of R.

b) If d < 0 then r ≥ −d implies a− qd ≥ −d thus a− qd+ d ≥ 0
and a−(q−1)d ≥ 0. Now a−(q−1)d is in R and since a−(q−
1)d = r(−d) and d < 0 we must have a− (q − 1)d < r which
contradicts the assumption that r is the least nonnegative
number of R.

We have that r > 0 was not the least nonnegative number of R
which is a contradiction, so we must have r < |d|. Now we know
that q and r exists and 0 ≥ r < |d|.

2. To show uniqueness suppose ∃q, q′, r, r′ ∈ Z with 0 ≤ r, r′ < |d|
such that a = dq+ r and a = dq′+ r′. Assume q < q′. Subtracting
gives 0 = dq − dq′ + r − r′ or d(q′ − q) = r − r′.



8 CHAPTER 2. MATHEMATICAL BACKGROUND

If d > 0 then r′ ≤ r and r < d < d + r′ so r − r′ < d. Similarly,
if d < 0 then r ≤ r′ and r′ < −d ≤ −d + r so −(r − r′) < −d.
Combining gives |r − r′| < |d|.
Since d(q′ − q) = r − r′ we must have that |d| divides |r − r′| and
we have either |d| ≤ |r − r′| or |r − r′| = 0. And we know that
|r − r′| < |d| so we conclude that |d| can not be less than or equal
to |r − r′| and we have r = r′. Substituting gives dq = dq′. Since
d 6= 0 we also have q = q′.

Theorem 4. Larger divisor yields smaller quotient.

If y′ > y then q′ ≤ q for q in x = qy+r and q′ in x = q′y′+r′

for y > 0 and y, y′, q, q′, r, r′, x ∈ Z.

If y′ > y then ∃n ∈ Z such that y′ = y + n. Consider q′ in x = q′y′ + r′

and q in q = xy + r. The we have

q′ =
x− r′

y′
=
x− r′

y + n
≤ x

y + n

and

q =
x− r
y
≤ x

y

Assume q′ ≤ q then we have x
y+n
≤ x

y
which gives xy ≤ xy + xn and

0 ≤ xn which is true, so q′ ≤ q.

Étienne Bézout was a French matematician. He was born in Nemours,
Seine-et-Marne, France in 1730, and died 1783 in Basses-Loges, France.
He was elected adjoint in mechanics at the French Academy of Sci-
ences in 1758. He published numerous minor works and wrote the

Théorie générale des équation algébriques, published 1779. Étienne
Bézout proved his identity for polynomials, the same statement for in-
tegers can be found in the work of the French mathematician Claude
Gaspard Bachet de Méziriac.

Bézouts identity (or Bézouts lemma) states that if a and b are nonzero
integers with a greatest common divisor d then there exists numbers x
and y, called Bézout numbers or Bézout coefficients, such that ax+by =
d.

Theorem 5. Bezout’s identity.



2.3. EUCLID’S THEOREMS 9

If a, b, d ∈ Z, a, b 6= 0 and d is the greatest common divisor
of a and b then ∃x, y ∈ Z such that ax+ by = d

Proof. Assume that a, b > 0, consider the set S = {∀k|k = am+ bn}
where m,n ∈ Z. S is nonempty so by the well ordering principle there
is at least one member d = ax+ by. By the division algorithm ∃q, r ∈ Z
such that a = qd + r, 0 ≥ r < d. Since r = a − qd = a − q(ax + by) =
a(1 − qx) + b(−qy) it follows that r must be 0 otherwise r ∈ S thus
contradicting that d is the least element of S. So a = qd, i.e. d|a.
Similarly d|b and d is a common divisor of a and b. By definition d is
the greatest common divisor of a and b.

Two integers are relatively prime if they have no common factors.
One integer is prime if it divisible only by itself and one, i.e. it has only
one factor, itself. The opposite of a prime is a composite, an integer that
is the product of two or more prime factors.

Definition 9. Relatively prime (coprime).

a, b ∈ Z are relatively prime if gcd(a, b) = 1.

Definition 10. Prime.

p ∈ Z, p ≥ 2 is prime if its only positive divisors are 1 and
p. If p is not prime p is said to be composite.

2.3 Euclid’s theorems

“Give him a coin, since he must profit by what he learns.”

– Euclid of Alexandria.

Euclid was a Greek mathematician (300 BC) often referred to as the
father of geometry. Euclid was active in Alexandria under Ptolemy I’s
rule (323 BC – 283 BC). Euclid is the author of Elements, the most
successful textbook in the history of mathemathics. In Elements Euclid
deduced the principles of what is now known as Euclidean geometry from
a small set of axioms. Euclid’s works include topics such as perspective,
conic sections, spherical geometry and number theory.

Little is know about Euclid except his writings. He was active at
the Library of Alexandria and may have studied at Plato’s academy in
Greece. His date of birth and date of death is unknown.



10 CHAPTER 2. MATHEMATICAL BACKGROUND

Many of the results in Euclid’s Elements are from earlier mathemati-
cians, Euclid’s presented them in a logic and coherent way. He provided
a system of writing rigorous mathematical proofs that still is the basis
of mathematics.

Elements is best known for it’s geometry but also includes number
theory. It discusses perfect numbers and what we now know as Mersenne
numbers, the infinitude of primes (Euclid’s second theorem) and Euclid’s
lemma (Euclid’s first theorem) on factorization and also the Euclidean
algorithm for finding the greatest common divisor.

Theorem 6. Euclid’s lemma (Euclid’s first theorem).

If p|ab then p|a or p|b.

Proof. Assume p|ab and that p is relatively prime to a. Then
gcd(a, p) = 1 and ∃x, y ∈ Z such that xp + ya = 1. Multiply by b
to get xpb+ yab = b. Now p|xpb and since p|ab we also have p|yab, thus
b is a multiple of p and we have p|b. So p either divides a or divides b.

Theorem 7. The infinitude of primes (Euclid’s second theorem).

There is an infinite number of prime numbers.

Proof. Assume the prime numbers are finite. We can then create a
finite set P = {p1, p2, . . . , pn−1, pn} of all the prime numbers where pn
is the largest prime number and pn−1 < pn.

Now, consider the number M = 1 + p1p2 . . . pn−1pn. We have:

1. M is not a prime number because pn is the largest prime number
and M > pn. Thus there must be some prime that divides M .

2. M is not divisible by any of the pi, 1 ≤ i ≤ n and since M is
not prime the prime that divides M must be larger than any pi,
1 ≤ i ≤ n.

Thus, for a finite set of prime numbers we can find a number that
implies the existence of a larger prime number than already in the set.
We conclude that there are an infinite number of prime numbers.



2.4. THE FUNDAMENTAL THEOREM OF ARITHMETIC 11

2.4 The fundamental theorem of arithmetic

The fundamental theorem of arithmetic was almost proven by Euclid in
his Elements. The first full and correct proof is in Disquisitiones Arith-
meticae by Carl Friedrich Gauss. The fundamental theorem of arith-
metic is also called the unique factorization theorem and is a corollary
of Euclid’s lemma.

Theorem 8. The fundamental theorem of arithmetic.

n ∈ Z, n ≥ 2 can be written as a product of prime powers:

n = pe11 p
e2
2 . . . p

ek−1

k−1 p
ek
k

The factorization is unique up to the rearrangement of fac-
tors.

Proof. We show existence and uniqueness:

1. To show existence suppose there is a positive integer that can not
be written as a product of prime numbers, then, by the well or-
dering principle, there must be a smallest such number, n. n can
not be prime, by our initial assumption, so n must be a composite
number and we have n = ab, a, b ∈ Z, a, b < n. Now, n is the
smallest number that has no prime factorization so a and b can
be written as a product of prime numbers. Since n = ab, n must
also be a product of prime numbers, contradicting our initial as-
sumption. Thus all x ∈ Z can be written as a product of prime
numbers.

2. To show uniqueness suppose s is the smallest positive integer that
can be written as at least two different products of prime numbers.
Thus s = p1p2 · · · pm−1pm and also s = q1q2 · · · qn−1qn. By Eu-
clid’s lemma (theorem 6) p1|q1 or p1|q2q3 · · · qn−1qn. Since q1 and
q2q3 · · · qn−1qn are smaller than s both must have unique prime
factorizations which implies p1 = qi, 1 ≤ i ≤ n. We remove p1

and qi from p1p2 · · · pm−1pm and q1q2 · · · qn−1qn respectively. Now
we have an integer s′ where s′ < s which contradicts our initial
assumption. Thus there can be no such s and all natural numbers
have an unique prime factorization.

So, by 1 and 2 there is a unique prime factorization ∀n ∈ Z.



12 CHAPTER 2. MATHEMATICAL BACKGROUND

2.5 Modular arithmetic

“If others would but reflect on mathematical truths as deeply
and as continuously as I have, they would make my discov-
eries.”

– Carl Friedrich Gauss.

Modular arithmetic was introduced by Carl Friedrich Gauss in his
book Disquisitones Arithmeticae in 1801. Johann Carl Friedrich Gauss
was a German mathematician and scientist, born 1777 in Braunschweig
and died 1855 in Göttingen. Gauss is considered the Prince of mathe-
maticians and the greatest mathematician since antiquity, he contributed
to many areas, such as: number theory, statistics, analysis, differential
geometry, geodesy, electrostatics, astronomy and optics.

He was a boy genious, one story tells that his primary school teacher
occupied his pupils by making them adding a list of integers. To the
teacher’s astonishment Gauss produced the right answer within seconds.
Gauss presumably realized that pairwise addition from both ends of a
list of numbers from say 1 to 100 yields identical sums. The total sum
thus being (100 + 1) 100

2
.

His father did not support Gauss’ studies in mathematics and instead
wanted him to follow him and become a mason. His mother on the other
hand supported him, so did the Duke of Braunschweig who awarded him
a fellowship to study at the Collegium Carolinum (Technische universität
Braunschweig) from where he continued to the University of Göttingen in
1795. At the university Gauss rediscovered several important theorems
and proved that any regular polygon with a Fermat prime number of
sides can be constructed by a compass and a straightedge. This was an
important result with implications for construction problems. Gauss was
pleased with his result, so much that he requested that his tombstone
be inscribed with a heptadecagon. The stonemason protested claiming
that it would look to much like a circle.

In 1796 Gauss invented modular arithmetic, thus greatly simplifying
manipulations in number theory, he also conjectured the prime number
theorem and proved the quadratic reciprocity law. In 1799 Gauss proved
the fundamental theorem of algebra. In his 1801 book Disquisitiones
arithmeticae he cleanly presented the modular arithmetic and provided
a proof of the quadratic reciprocity law.

Gauss also claimed to have discovered non-Euclidean geometry, but
never published his findings. This was to be a paradigm shift in math-



2.5. MODULAR ARITHMETIC 13

ematics, it challenged the Euclid axioms as the only way to make ge-
ometry consistent. Research on non-Euclidean geometries later led to
Einstein’s theory of general relativity. non-Euclidean geometry was later
discovered and published by János Bolyai in 1832. Gauss wrote to Farkas
Bolyai, János father and a friend of Gauss

To praise it would amount to praising myself. For the entire
content of the work... coincides almost exactly with my own
meditations which have occupied my mind for the past thirty-
five years.

Gauss had indeed, before 1829, discussed the problem of parallel lines
in letters and had discovered non-Euclidean geometry long before it was
published by János but did not publish any of it because of fear of
controversy.

Later he collaborated with physics professor Wilhelm Weber which
led to new knowledge in magnetism and the discovery of Kirchoff’s circuit
laws of electricity.

Gauss was a perfectionist and worked hard. It is said that Gauss
was once interrupted while working on a problem with the message that
his wife was dying. He responded “Tell her to wait a moment till I’m
done”. He was not a very productive writer, choosing not to publish
results he did not think was complete and above criticism. It is said
that he attended only one scientific conference. Even though he disliked
teaching he did take on a few students, several of them became successful
mathematicians; Richard Dedekind, Bernhard Riemann and Friedrich
Bessel.

Definition 11. Congruence modulo m.

a is congruent to b modulo n, written a ≡ b (mod n) if ∃k ∈
Z : a− b = kn for a, b, n ∈ Z.

If a ≡ b (mod n) then ∃k ∈ Z : a− b = kn.

Theorem 9. Addition and subtraction modulo m.

If a ≡ b (mod n) then a+j ≡ b+j (mod n) and a−j ≡ b−j
(mod n) for j, a, b, n ∈ Z.

Proof. By definition 11, a ≡ b (mod n) implies ∃k ∈ Z : a− b = kn,
and then a+ j ≡ b+ j (mod n) implies (a+ j)− (b+ j) = a− b = kn.
Also a− j ≡ b− j (mod n) implies (a− j)− (b− j) = a− b = kn.



14 CHAPTER 2. MATHEMATICAL BACKGROUND

Theorem 10. Multiplication modulo n.

1. If a ≡ b (mod n) then aj ≡ bj (mod n) for j, a, b, n ∈ Z.

2. If j, k ∈ Z, k > 0 and a ≡ b (mod n) then a · jk ≡ b · jk
(mod n).

3. If k ∈ Z, k > 0 and a ≡ b (mod n) then ak ≡ bk

(mod n).

Proof.

1. By definition 11, a ≡ b (mod n) implies ∃k ∈ Z : a− b = kn, and
then aj ≡ bj (mod n) implies aj − bj = j(a− b) = jkn, where we
can rewrite jk as k.

2. Apply property 1 k times.

3. First, a − b is always a factor of ak − bk so ∃i ∈ Z such that
ak − bk = (a − b) · i = i · (jn) = (ij) · n which implies ak ≡ bk

(mod n).

Theorem 11. Modular arithmetic is an equivalence relation.

Modular arithmetic is reflexive, symmetric and transitive,
which means it is an equivalence relation:

1. a ≡ a (mod n) (reflexive).

2. if a ≡ b (mod n) then b ≡ a (mod n) (symmetric).

3. if a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n)
(transitive).

Proof. We show each property:

1. a ≡ a (mod n) implies a− a = kn which is satisfied by k = 0.

2. a ≡ b (mod n) ⇔ a − b = kn and b ≡ a (mod n) ⇔ b − a = −kn
both satisifying defintion 11.

3. ∃k, j ∈ Z : a − b = kn and b − c = jn. If a ≡ c (mod n) then
a − c = in by definition 11. Now a − c = (a − b) + (b − c) =
kn+ jn = (k + j)n and i = k + j which implies a ≡ c (mod n).



2.6. FERMAT’S LITTLE THEOREM 15

Theorem 12. Modular addition and subtraction.

If a ≡ b (mod n) and c ≡ d (mod n) then a + c ≡ b + d
(mod n) and a− c ≡ b− d (mod n).

Proof. By definition 11, a ≡ b (mod n) ⇔ a − b = kn and c ≡ d
(mod n)⇔ c−d = jn so (a+c)−(b+d) = (a−b)+(c−d) = kn+jn = (k+
j)n and similarly (a−c)−(b−d) = (a−b)−(c−d) = kn−jn = (k−j)n.

Theorem 13. Multiplying moduli.

If a ≡ b (mod n) and a ≡ b (mod m) and n and m are
relatively prime then a ≡ b (mod nm).

Proof. ∃k, j ∈ Z : a−b = km and a−b = jn. Since m divides (a−b),
m must also divide jn, but n and m are relatively prime so m must
divide j. Then ∃l ∈ Z : j = ml then a− b = kn = mln = lmn ⇒ a ≡ b
(mod nm).

Theorem 14. Cancellation modulo n.

Given ac ≡ bc (mod n) where c and n are relatively prime
then a ≡ b (mod n).

Proof. ∃k ∈ Z : ac− bc = c(a− b) = kn. n divides kn so it must also
divide c(a − b) but c and n are relatively prime so n must divide a − b
and then ∃j ∈ Z : a− b = jn thus a ≡ b (mod n).

2.6 Fermat’s little theorem

“Cuius rei demonstrationem mirabilem sane detexi hanc margi-
nis exiguitas non caperet (I have discovered a truly remark-
able proof of this theorem which this marigin is too small to
contain).”

– Pierre de Fermat.

Pierre de Fermat (1601 – 1665) was a French lawyer at the Par-
lement of Toulouse and also one of the two leading mathematicians of
the early 17th century (together with René Descartes). He was a born at
Beaumont-de-Lomagne, northwest of Toulouse, his father was a leather
merchant and the second consul of Beaumont-de-Lomagne. He went to



16 CHAPTER 2. MATHEMATICAL BACKGROUND

the University of Toulouse and moved to Bordeaux in the late 1620s. In
Bordeaux he achieved his first serious mathematical results. Later he
moved to Orléans to study law. By 1631 he was a lawyer and a gov-
ernment official in Toulouse and was entiteled to change his name from
Perre Fermat to Pierre de Fermat.

He stayed in Toulouse for the rest of his life, in 1638 he was promoted
from the lower chamber of the parliament to a higher chamber, in 1652
he was promoted again to the highest level at the criminal court. He was
preoccupied with mathematics, it was said about Fermat in a report to
Colbert that

Fermat, a man of great erudition, has contact with men of
learning everywhere. But he is rather preoccupied, he does
not report cases well and is confused.

Fermat shared his mathematical interest with Carcavi, who he met
while both were councillors in Touluse. Through Carcavi Fermat became
acquainted to Mersenne. Fermat was never interested in publishing his
work and considered himself more of an amateur (he is now regarded as
the “King of amateurs”). He communicated his results in letters to his
friends, and provided little or no proof of his theorems.

Fermat pursued research in analytic geometry, probability, optics, the
theory of numbers and is credited for early developments in calculus. His
method of finding minima and maxima of curves led to what we now
know as differential calculus.

In number theory Fermat studied, among other subjects, diophantine
equations, Fermat numbers1, perfect numbers2 and amicable numbers3.
It was when he was studying perfect numbers that he discovered Fermat’s
little etheorem.

Fermat’s famous last theorem was discovered by his son in the margin
on his father’s copy of an edition of Diophantus. Pierre de Fermat had
written in the margin that he had discovered a proof of the theorem but
that the margin was too small to include the proof. He had not even
bothered to tell Mersenne about the proof. Fermat’s last theorem was
unproven until 1994. It was proven with techniques unknown to Fermat.

1A Fermat number is a positive integer of the form Fn = 22
n

+ 1.
2A perfect number is a positive integer which is the sum of its proper positive

divisors.
3Amicable numbers are two positive integers where one is the sum of the proper

divisors of the other.



2.6. FERMAT’S LITTLE THEOREM 17

Perre de Fermat first stated his little theorem in a letter to Frénicle de
Bessy as: “p divides ap−1−1 whenever p is prime and a is coprime to p”.
Fermat did not prove his statement, he only said “And this proposition
is generally true for all progressions and for all prime numbers; the proof
of which I would send to you, if I were not afraid to be too long”. Euler
published a proof in 1736 and Leibniz provided an equivalent proof in
an unpublished manuscript from before 1683. The name “Fermat’s little
theorem” was coined by Kurt Hensel in his 1913 book Zahlenteorie.

Theorem 15. Fermat’s little theorem.

If p is prime and p is not a factor of a then ap−1 ≡ 1 (mod p).

Proof. consider the set A = {a1, a2, . . . , a(p− 2), a(p− 1)}.

1. ak 6≡ 0 (mod p) for 1 ≤ k ≤ p− 1. Assume the opposite, if ak ≡ 0
(mod p) then ak − 0 = np for some n, since p and a are relatively
prime ak = np implies that p divides k but that is impossible since
1 ≤ k ≤ p. We conclude that none of the integers in the set A is
congruent to 0 (mod p).

2. aj 6≡ ak (mod p) for 1 ≤ k < j ≤ p − 1. Assume the opposite, if
aj ≡ ak (mod p) we have aj−ak = a(j−k) = np for some n. a and
p are relatively prime so p must divide j− k but 1 ≤ j− k ≤ p− 1
so it is impossible, thus aj 6≡ ak (mod p).

3. Consider the simpler set R = {1, 2, . . . p−2, p−1} of representatives
of all the equivalence classes of the integers modulo p. Write the
set R as {r1, r2, . . . rp−2, rp−1} in a possibly different order. Now,
∀i, 1 ≤ i ≤ p− 1 we have:

a1 ≡ r1 (mod p)

a2 ≡ r2 (mod p)

...

a(p− 2) ≡ rp−2 (mod p)

a(p− 1) ≡ rp−1 (mod p)



18 CHAPTER 2. MATHEMATICAL BACKGROUND

Multiply the left hand sides and the right hand sides to get:

(a1)(a2) . . . (a(p− 2))(a(p− 1)) = r1r2 . . . rp−2rp−1 (mod p)

ap−1(1 · 2 . . . (p− 2) · (p− 1) =

p−1∏
i=1

ri (mod p)

ap−1(p− 1)! = (p− 1)! (mod p)

Since all factors of (p−1)! are relatively prime to p we can use the
cancellation law (theorem 14) to get:

ap−1 ≡ 1 (mod p) (2.1)

2.7 Euler’s theorem

“Mathematicians have tried in vain to this day to discover
some order in the sequence of prime numbers, and we have
reason to believe that it is a mystery into which the human
mind will never penetrate.”

– Leonhard Paul Euler.

Leonhard Paul Euler was born in Basel, Switzerland 1707 and died
in S:t Petersburg, Russia in 1783. Euler is considered the first mathe-
matician of the 18th century and one of the greatest mathematicians of
all time. Euler made important discoveries in fields as diverse as calcu-
lus and graph theory, mechanics, fluid dunamics, optics and astronomy.
Much of our modern mathematical notation and terminology was intro-
duced by Euler, particulary in analysis.

Euler’s father was a pastor and his mother a pastor’s daughter. Euler
spent most of his childhood in Riehen, Euler’s father was a friend of
the Bernoulli family. Johann Bernoulli, then regarded as the foremost
mathemathician in Europe, influenced Euler. At the age of thirteen he
was enrolled at the university of Basel and graduated in 1723. Euler
was studying theology, Greek and Hebrew in order to become a pastor.
On Saturday afternoons he received lessons in mathematics by Johann



2.7. EULER’S THEOREM 19

Bernoulli who discovered Euler’s incredible talent. Johann convinced
Euler’s father that Euler was destined for mathematics. In 1726 Euler
received his Ph. D.

Bernoulli’s sons were at the Imperial Russian Academy of Sciences in
S:t Petersburg. In the summer of 1726 one of the sons died of appendici-
tis, the other son assumed his position and recommended Euler for his
own, now empty, position in physiology. Euler was soon promoted from
the medical departement to a position in the mathematics departement.
Euler’s career flourished and he was appointed professor of physics in
1731 and two years later became head of the mathematics departement.
He married in 1734 and moved to Berlin in 1741, where he took a post
at the Berlin Academy offered by Frederick the Great of Prussia. Euler
stayed in Berlin for 25 years where he wrote over 380 articles and his
two most important works were published; the Introductio in analysin
infinitorium in 1748 and the Institutiones calculi differentialis in 1748.

Eventually Euler was forced to leave Berlin and returned to Russia
after receiving an invitation from the S:t Petersburg Academy, where he
spent the rest of his life.

Euler’s achievements are too numerous to list and deserve an entire
book. He worked in almost all areas of mathematics: geometry, calculus,
trigonometry, algebra, number theory, etc. He also studied continuum
physics, lunar theory and other fields. He introduced or popularized
much of the notation and terminology we use today, most notably the
concept of a function f(x) and the trigonometric functions as well as
the letter e for the base for the natural logarithm, the greek letter

∑
for summation and i, the imaginary unit and the letter π for the ration
of a cirle’s circumference to its diameter. A notable example from Eu-
ler’s work on analysis is the Euler identity eiπ + 1 = 0, voted the most
beautiful mathematical formula ever by the readers of the Mathematical
Intelligencer in 1988.

Euler laid the foundations to graph theory by solving the problem
of the seven bridges of Königsberg. Königsberg in Prussia (now Kalin-
ingrad, Russia) was divided by the Pregel river and included two large
islands connected by seven bridges.

The problem of the seven bridges of Königsberg was to find a walk
through the city that crossed each bridge once, and only once. Euler
proved that there is no solution to the problem. He noted that the choice
of route on the mainland or on the islands is irrelevant, the only feature
of a route that matters is the sequence of bridges crossed. Building on
this realization he formulated the problem in the abstract, thus laying



20 CHAPTER 2. MATHEMATICAL BACKGROUND

the foundations to graph theory by defining nodes and edges and forming
a graph. He found that a walk that traverses each edge once exists if and
only if the graph is connected and if there are exactly zero or two nodes
of an odd degree, where degree is the number of edges of a node. Such
a walk is called an Eulerian path or Euler walk. The city of Königsberg
had four nodes of odd degree and cannot have an Eulerian path.

Euler’s interest in number theory came from his friend Christian
Goldbach at the S:t Petersburg Academy. Much of Euler’s early work
on number theory was based on the works of Pierre de Fermat. Euler
proved Fermat’s little theorem and invented the totient function Φ(n)
which is the number of positive integers less than n that is coprime to n.
Using the totient function he generalized Fermat’s little theorem to Eu-
ler’s theorem. He also made progress toward the prime number theorem
and contributed to the theory of perfect numbers.

Definition 12. The Euler totient function Φ(n).

Φ(n), n ∈ Z, n > 0 is the number of integers not exceeding n
that are relatively prime to n. By definition Φ(1) = 1.

Theorem 16. Totient evaluation 1.

If p is prime then Φ(p) = p− 1.

Proof. Since p is prime every integer less than p is relatively prime
to p.

Theorem 17. Totient evaluation 2.

If p is prime then Φ(pk) = pk− pk−1 = pk(1− 1
p
) = pk−1(p−

1) = pk−1Φ(p).

Proof. Consider the set of integers {1p, 2p, . . . , (pk−1 − 1)p, pk−1p}.
There are pk−1 members, each is a multiple of p and we have Φ(pk) =
pk − pk−1 = pk−1(p− 1) = pk−1Φ(p).

Theorem 18. Totient evaluation 3.

If p and q are two primes, p 6= q then

Φ(pkql) = Φ(pk)Φ(ql) = pkql(1− 1

p
)(1− 1

q
)



2.7. EULER’S THEOREM 21

Proof. Let n = pq, p and q are the only prime factors of n. So, all
integers less than n, except the multiples of p and the multiples of q, are
relatively prime to n. The number of multiples of p (and q) that are less
than n are n

p
(and n

q
). And n

pq
are the number of multiples of pq that

are less than n. Some of the multiples of p include all the multiples of
pq and some of the multiples of q include all the multiples of pq. So, we
compute Φ(n) as

Φ(n) = n− n

p
− n

q
+

n

pq

now, since we subtract the multiples of pq twice, and add them once,
after rewriting, we arrive at

Φ(pkql) = pkql(1− 1

p
)(1− 1

q
)

which, by theorem 17, is

Φ(pkql) = Φ(pk)Φ(ql)

Theorem 19. Euler’s theorem.

If a and n are relatively prime then

aΦ(n) ≡ 1 (mod n)

Proof. Consider the set R of integers less than n that are relatively
prime to n. There are Φ(n) members of the set R. We write

R = {r1, r2, . . . , rΦ(n)−1, rΦ(n)}

Now consider the set A = {ar1, ar2, . . . arΦ(n)−1, arΦ(n)}. We claim
that no two members of this set are congruent to each other modulo n.
If j 6= k but arj ≡ ark (mod n) then arj − ark = bn for some b ∈ Z and
a(rj − rk) = bn and since a and n are relatively prime we must have
rj − rk = cn for some c ∈ Z. This implies that rj ≡ rk (mod n) which
is impossible since all ri represent distinct equivalence classes.

Now, since ri as well as a are relatively prime to n, so are the Φ(n)
members of the set A and we can replace the set A with the set R. We
write S = {s1, s2, . . . , sΦ(n)−1, sΦ(n)} as a reordering of the set R where:



22 CHAPTER 2. MATHEMATICAL BACKGROUND

ar1 ≡ s1 (mod n)

ar2 ≡ s2 (mod n)

...

arΦ(n)−1 ≡ sΦ(n)−1 (mod n)

arΦ(n) ≡ sΦ(n) (mod n)

Multiplying the right hand sides with the left hand sides, we get (note

that
∏Φ(n)
i=1 ri =

∏Φ(n)
j=1 sj) :

(ar1)(ar2) . . . (arΦ(n)) ≡ s1s2 . . . sΦ(n) (mod n)

aΦ(n)(r1r2 . . . rΦ(n)) ≡
Φ(n)∏
i=1

si (mod n)

aΦ(n)

Φ(n)∏
j=1

ri ≡
Φ(n)∏
i=1

si (mod n)

Since all of the rj :s and sj :s are relatively prime to n we get, by the
cancellation law (theorem 14):

aΦ(n) ≡ 1 (mod n) (2.2)



Chapter 3

Computational Complexity

3.1 Prerequisites

Definition 13. Alphabet.

An alphabet is a nonempty finite set (Σ) such that every
string formed by elements of the alphabet can be decomposed
uniquely into elements of the alphabet.

If we have the alphabet Σ and n ∈ Z+ we say

• Σ0 = λ where λ is the empty string.

• Σn = { xy | x ∈ Σ, y ∈ Σn−1}

Thus Σn is the set of all strings formed from Σ of length n.

Definition 14. Kleene star.

The Kleene star of an alphabet is the set

Σ∗ =

∞⋃
n=0

Σn

where n ∈ Z+. We also define Σ+ as

Σ+ =

∞⋃
n=1

Σn

23



24 CHAPTER 3. COMPUTATIONAL COMPLEXITY

Definition 15. Language.

A language over an alphabet Σ is a subset of Σ∗, i.e. a set
of strings formed by the elements of the alphabet Σ.

Definition 16. Grammar.

A grammar is a tuple (Σ, N, P, σ) where

1. (Σ, P ) is a rewriting system, a tuple where Σ is an al-
phabet and P is binary relation (nonempty, finite) on
Σ∗. The elements of P are rewrite rules or productions.
Instead of writing (x, y) ∈ P we write x→ y.

2. N is the set of non-terminals, a subset of Σ and T =
Σ−N is the set of terminals.

3. The element σ ∈ N is the starting symbol .

We say that a word v over Σ is immediately derivable from
the word u over Σ if there is a production x → y such that
u = rxs and v = rys.

Given a grammar G, the language generated by G is the set L(G) =
{w ∈ T ∗ | σ → w }.

3.2 Turing machine

A Turing machine is a mathematical model of a machine. The machine
has a finite set of primitive instructions and reads and writes symbols
on a tape according to the instructions. A turing machine consists of

1. A tape, divided into cells, one after the other. The cells contain
symbols selected from an alphabet. The cells can be read and
written (owerwritten). The alphabet includes a blank symbol and
unwritten cells of the tape are initially filled with blank symbols.
The tape can be infinitely extended in both ends.

2. A head that can read and write symbols from the alphabet on the
tape as well as move the tape left and write one cell at a time.



3.2. TURING MACHINE 25

3. A table of instructions. The instructions are tuples

(qi, aj , q
′
j , a
′
j , dk)

which are interpreted as

Given that the machine is in state qi and has read the
symbol aj then do the following (in sequence):

a) Erase or write a symbol. Write a′j instead of aj .

b) Move the head. If dk = R move the tape one step
to the right, if dk = L move the tape one step to the
left, if dk = N do not move the tape.

c) Change state. Change the state to q′i.

4. A state register that records the current state of the table. There
is one start state which is the initial state of the machine.

The Turing machine can be formally defined, see definition 17 below.

Definition 17. Turing machine.

A Turing machine is a tuple,

M = (Q,Γ, b,Σ, δ, q0, F )

where

1. Q is a finite set of states.

2. Γ is a finite set of symbols, the alphabet.

3. b ∈ Γ is the blank symbol.

4. Σ ⊆ Γ \ {b} is the set of input symbols.

5. δ : Q×Γ→ Q×Γ×{L,R,N} is the transition function,
a partial function (not defined for all Q× Γ).

6. q0 ∈ Q is the initial state.

7. F ⊆ Q is the set of final states (or accepting states).

The rows of the table of a Turing machine are a representation of the
transition function and contains five tuples of the form:

(qi, aj , q
′
i, a
′
j , dk)



26 CHAPTER 3. COMPUTATIONAL COMPLEXITY

where qi, q
′
i ∈ Q where Q = {qk | 0 ≤ k ≤ n} ∪ F , and F is the

set of final states, q0 is the initial or start state. Also aj , a
′
j ∈ Γ and

Γ = {aj | 0 ≤ j ≤ m} ∪ {E,N} where E means erase the cell (write a
blank, b) and N means do nothing (write aj). Finally, dk ∈ {R,L,N}
where R means move the tape to the right, L move the tape to the left
and N means do not move the tape.

The example in table 3.1 (Turing’s first example, 1936) computes the
sequence [0 1 0 1 0 1 . . . ] i.e. 0, <blank>, 1, <blank>, etc.

qi aj q′i a′j dk
b b c 0 R
c b e N R
e b f 1 R
f b b N R

Table 3.1: Compute [0 1 0 1 0 1 . . . ]

The Turing machine models computation rather than it models a
computer. A real machine (computer) is a deterministic finite automa-
ton and is restricted to a finite number of configurations. The Turing
machine has infinite memory and is equivalent to a computer with un-
limited memory. It can compute anything a real computer can compute.
In a finite amount of time it can manipulate only a finite amount of data
like a real computer.

In 1937, at Princeton, Alan Turing set out to realize the logical design
of the Turing machine. He manufactured his own relays and built a
digital multiplier. At the same time Konrad Zuse, in Germany (1938),
and Howard Aiken and George Stiblitz (1937) built similar machines.
This was the birth of computer science.

“A man provided with paper, pencil, and rubber, and subject
to strict discipline, is in effect a universal machine.”

– Alan Mathison Turing

Alan Mathison Turing (1912 – 1964) was a Brithish mathematician.
Time magazine has named Turing as one of the 100 most influential
people of the 20th century for his contributions. He is considered the
father to computer science.

Alan Turing was conceived in India. His parents wanted Alan to be
raised in England and moved back moved back to England where he



3.2. TURING MACHINE 27

was born. His talent was reconized early and he loved solving advanced
problems. Turing became an atheist as a teenager when his first love, an
older fellow student died in bovine tuberculosis after drinking infected
cow’s milk.

He failed to win a scholarhip at Trinity College in Cambridge be-
cause of his lack of interest in classical studies. Instead Alan went to
King’s College (Cambridge), his second choice, where he graduated in
1934. In 1936 he published his paper “On Computable Numbers, with
an Application to the Entscheidungsproblem” where he introduced the
Turing machine and proved that such a machine is capable of solving any
conceivable mathematical problem if it is representable as an algorithm.

From 1936 to 1938 he spent most of his time at Princeton’s Institute
for Advanced Study, working under Alonzo Church, and received his Ph.
D. in June 1938. He then returned to Cambridge.

During the Second World War he was one of the main participants
at Bletchley Park where German ciphers was broken. At Bletchley Park
he designed electromechanical machines, Bombes, that were one of the
main tools used to break the German ciphers.

From 1945 to 1947 Alan was at the National Physical Laboratory
working on the design of the Automatic Computing Engine (ACE). In
1946 he published a paper with the first detailed design of a stored
program computer. He became disillusioned by the secrecy around the
work at Bletchley park which delayed the construction of the ACE and
returned to Cambridge.

In 1949 he became the deputy director of the computing laboratory
at the University of Manchester where he wrote programs for one of
the first true computers, the Manchester Mark 1 and also devised the
Turing test. If a machine could fool an interrogator in a separate room
that the he had a conversation with a human then the machine could
be considered intelligent. The Turing test thus decides if a machine is
intelligent.

In 1952, Arnold Murray, an acquaintance of Turing helped an accom-
plice breaking into Turing’s house. Alan reported the crime to the police
and in the investigation Turing acknowledged a sexual relation with Mur-
ray. Homosexuality was illegal in the United Kingdom so Turing and
Murray were charged. Turing had to choose between imprisonment and
probation after chemical castration. Turing accepted to avoid jail and
was given estrogen injections to reduce libido. His security clearance was
revoked as a consequence of the conviction. He could no longer continue
as a cryptographic consultant to the military intelligence. Turing com-



28 CHAPTER 3. COMPUTATIONAL COMPLEXITY

mitted suicide by cyanide poisoning in 1954. A half-eaten apple laced
with cyanide was next to his bed, where he was found dead.

The computing world’s equivalent to the Nobel Prize, the Turing
Award, has been awarded annually by the Association for Computing
Machinery since 1966.

3.3 Complexity

A decision problem is a question, posed in a formal system, with a yes
or no answer. For example “given x, y ∈ N does x evenly divide y?”

We can describe how to answer the question of a decision problem in
an algorithm, or a decision procedure. One such decision procedure for
our divisibility question is long division. If the remainder of the division
of y by x is zero then the answer is yes, if not it is no. The decision
problem takes a string as input, in our example x y.

We introduce two terms time complexity and space complexity . The
time complexity of a problem (decision problem) is a measure of the
number of steps executed while solving an instance of a problem as a
function of the size of the input and space complexity is a measure of
the space required to solve an instance of a problem as a function of the
size of the input.

Big O notation or asymptotic notation is used to describe the behavior
of a function when the argument tends to infinity (sometimes toward a
specific value). Big O notation allows us to specify the general behavior
of a function, i.e. using a simpler function.

Definition 18. Big O notation.

We say

f(x) = O(g(x)) as x→∞

if and only if there exists a real number c > 0 and a real
number x0 such that

∀x > x0 |f(x)| ≤ c · |g(x)|

Thus f(x) is at most a constant times g(x), for sufficiently
large x.



3.4. CLASSES 29

We also write

f(x) = Θ(g(x)) if ∃c0, c1 > 0, x0 ∀x > x0

c0 · |g(x)| ≤ f(x) ≤ c1 · |g(x)|
f(x) = Ω(g(x)) if ∃c > 0, x0 ∀x > x0

|f(x)| ≥ c · g(x)

For example, say we have f(x) = ax3 + bx2 + cx + d. Using big O
notation we can describe the growth rate of f(x) as x approaches infinity
as f(x) ∈ O(n3).

We will abuse the notation and simply write f(x) = O(g(x)), thus
implicitly mean as x→∞.

3.4 Classes

If there is an algorithm (a Turing machine, or a computer program) that
can decide an input string of length n in at most cnk steps, i.e. in O(nk)
operations (see definition 18), we say that the problem can be solved in
polynomial time.

A deterministic Turing machine has at most one action to perform
for any given situation. A non-deterministic Turing machine may have
a set of rules that specify more than one action for a given situation.

The current state and current symbol on the tape does not uniquely
specify the behavior of a non-deterministic Turing machine. Instead
many different transitions may apply for a combination of a state and a
symbol. A non-deterministic Turing machine will always select one such
transition that will eventually lead to an accepting state (halt). It is a
very lucky guesser.

A deterministic Turing machine has a single path of computation
whereas the non-deterministic Turing machine has a branching path of
computation, a computation tree. The deterministic Turing machine is
a special case of the non-deterministic Turing machine. We can view the
non-deterministic variant as spawning deterministic Turing machines at
each branching point.

We define the set P as the set of all languages that can be decided
by some deterministic polynomial-time Turing machine (M).

P = {L | L = L(M)} (3.1)



30 CHAPTER 3. COMPUTATIONAL COMPLEXITY

where L(M) = {w ∈ Σ∗ | M accepts w}.
The complexity class P is one of the fundamental complexity classes.

It contains all those decision problems which can be solved by a deter-
ministic Turing machine in polynomial time. Cobham’s thesis propose
that

A computational problem can be feasibly computed on some
computational device only if they can be computed in poly-
nomial time, i.e. if they belong to P

We know that some problems not known to be in P have feasible so-
lutions and that some problems known to be in P do not. However,
Cobham’s thesis is a useful rule of thumb; problems in P are usually
tractable.

We define the important complexity class NP, the set of all deci-
sion problems that can be decided in polynomial time by some non-
deterministic Turing machine Mn, i.e.

NP = {L | L = L(Mn)} (3.2)

where L(Mn) = {w ∈ Σ∗ | Mn accepts w}.
Another way to define NP is to consider a verifier . If the verifier is

given a solution to a problem, a certificate, the verifier verify if indeed
the certificate is a solution to the problem. Then a problem is in NP
if and only if there exists a verifier for the problem such that it exe-
cutes in polynomial time. Note that the verifier need only be able to
answer “Yes” in polynomial time. The complexity classs co-NP is the
set of problems whose certificates can be verified with a “No” answer in
polynomial time.

We define yet another complexity class, the class of NP-complete
problems, NPC. A problem p is in NPC if

1. p can be verified by a deterministic Turing machine in polynomial
time.

2. All problems can be transformed, or reduced to p in polynomial
time.

So, by 1, NPC is a subset of NP. And, by 2, we have that if we can
solve any problem in NPC in polynomial time then we can solve all
problems in NPC.



3.4. CLASSES 31

A reduction of a problem is a transformation of one problem into
another problem. A problem p1 is reducible to another problem p2 if
there exists solutions to p2 and they provide solutions to p1 whenever
there are solutions to p1. Or, formally for the sets A ⊂ N and B ⊂ N
and a set of functions F = {f : N × N} we have ∃f ∈ F ∀x ∈ N x ∈
A⇔ f(x) ∈ B.

Definition 19. Reducible.

A language L′ over the alphabet Σ is polynomial time re-
ducible to L if and only if

1. ∃f : Σ∗ → Σ∗ such that ∀w ∈ Σ∗ w ∈ L′ implies
f(w) ∈ L.

2. There exists a polynomial time Turing machine which
halts with f(w) on its tape on any input w.

If a language L′ is polynomial time reducible to L we write
L′ ≤p L.

Definition 20. NP-complete.

The language L is NP-complete if and only if

1. L ∈ NP.

2. ∀L′ ∈ NP L ≤p L′.

That is, NPC = {L | ∀L′ ∈ NP L ≤p L′}.

The class of NP-complete problems can be verified in polynomial
time but there is no known efficient way of finding a solution. Often,
if a solution to a problem can be verified efficiently (NP) there is often
an efficient algorithm to solve the same problem (P). However for the
NP-complete problems there are no known efficient solution. It has not
been proven that no such solution exists nor that it does. If a solution
is found to any one of the NP-complete problems then all NP-complete
problems have a solution and we would have that P = NP. This is
one of the most important remaining problems in the field of theoretical
computer science.





Chapter 4

Elementary arithmetic

4.1 Representation

A number is a mathematical object. A numeral is a notational symbol
used to denote a number. By combining numerals in a positional numeral
system we can express a large number of numbers.

A positional numeral system is a scheme to represent numbers with
numerals. A positional numeral system has a base b and numerals for all
numbers 0 . . . b − 1. We write a number X as (xnxn−1 . . . x1x0)b which
denotes:

X = (xnxn−1 . . . x1x0)b =

n∑
i=0

xib
i

Where every xi is less than the base b, i.e. 0 ≤ xi < b.
We (humans) commonly use the base 10, which we will use below

to demonstrate some properties of addition, subtraction, multiplication
and division of two single digits, which we call primitive operations.

Below, we prove two important consequences of our representation.
First we show that the expansion of a number X to its base b represen-
tation exists and is unique.

Theorem 20. Unique representation of integers.

There exists a unique representation (expansion) of the num-
ber X ∈ Z.

33



34 CHAPTER 4. ELEMENTARY ARITHMETIC

Proof. Assume b > 1 and X ≥ 0. We prove existence and unique-
ness.

1. To show existence we consider the representation or expansion of
X ≥ 0 in the base b:

X = (xkxk−1 . . . x1x0)b =

k∑
i=0

xib
i 0 ≤ xi < b

X = 0 obviously has the expansion (0)b. We use induction to prove
the existence of an expansion for X > 0 by assuming there exists
an expansion for X − 1. Then X − 1 has the expansion

X − 1 = (xkxk−1 . . . x1x0)b =

k∑
i=0

xibi

where 0 ≤ xi < b for xi ∈ Z and xk+1 = 0. Now, add 1 to both
sides of the equation, to get

X = x0 + 1 +

k∑
i=1

xib
i

If x0 < b − 1 then we have a representation for X. If not, then
x0 + 1 = b and we write

X = 0 + (x1 + 1)b+

k∑
i=2

xib
i

If x1 < b−1 then we have a representation for X. If not we repeat
the process, continuing until an i for which xi < b− 1 is reached.
We know that xk+1 = 0 so termination is guaranteed. When the
process terminates we have an expansion for X in base b.

2. To show uniqueness we again consider the integer X

X = (xkxk−1 . . . x1x0)b =
k∑
i=0

xib
i, 0 ≤ xi < b



4.1. REPRESENTATION 35

We have

xkb
k ≤

k∑
i=0

xib
i ≤ xkbk +

k−1∑
i=0

(b− 1)bi

xkb
k ≤

k∑
i=0

xib
i ≤ xkbk + (bk − 1)

xkb
k ≤

k∑
i=0

xib
i < (xk + 1)bk

which define the intervals [xkb
k, (xk + 1)bk). These intervals are

disjoint for every value of xk and thus no different values of xk
belong in the same interval.

So, X uniquely defines which interval xk is in. We consider

X − xkbk =

k−1∑
i=0

xib
i

and repeat the previous reasoning with k − 1 instead of k. We
find that xk−1 is also uniquely determined. Then we repeat the
process for X − xkbk − xk−1b

k−1 and so on to find that all the xi
are uniquely determined and thus the expansion of X is unique.

We have shown that an expansion exists ∀X ∈ Z where X > 0 and
that it is unique.

The expansion of a negative number, by definition is the negative of
the expansion of its absolute value. We know −X = −|X| and by the
reasoning above the we also know that a unique expansion exists for |X|
since |X| ≥ 0.

Thus a unique expansion exists ∀X ∈ Z.

Then we show a useful property of our representation. If we have
a number represented in base b we can, simply by grouping its digits,
switch bases, if the destination base is a multiple of the source base, i.e.
we can go from base b to base bk.

Theorem 21. From base b to base bk.



36 CHAPTER 4. ELEMENTARY ARITHMETIC

If we have X in an n + 1 digit base b representation, i.e.
X = (xnxn−1 . . . x1x0)b then for k ∈ Z, k > 0 we have
the base bk representation of X, X = (x′mx

′
m−1 . . . x

′
1x
′
0)bk ,

where m = dn+2
k
e − 1 and

x′i =

k−1∑
j=0

xik+jb
j , 0 ≤ i ≤ m− 1

x′m =

n−lk∑
j=0

xlk+jb
j

Proof. Consider the number X, X is (xnxn−1 . . . x1x0)b in base b
and X is (x′mx

′
m−1 . . . x

′
1x
′
0)bk in base bk. Thus, we have

x′i = X − q′ibki −
i−1∑
j=0

x′jb
kj

where q′i is given by X = q′ib
ki+r′i. Now, 0 ≤ x′i < bk and we can express

x′i in the base b with k digits as x′i = (x′′k−1x
′′
k−2 . . . x

′′
1x
′′
0 )b where x′′u is

given by

x′′u = x′i − q′′ubu −
u−1∑
v=0

x′′vb
v, 0 ≤ u ≤ k

and we see that (x′′k−1x
′′
k−2 . . . x

′′
1x
′′
0 )b is (xk−1xk−2 . . . x1x0)b. So a num-

ber Y = (y′m−1y
′
m−2 . . . y

′
1y
′
0)bk in base bk can be represented as Y =

(yn−1yn−2 . . . y1y0)b in base b with n = mk base b digits. Conversely a
number Y with n base b digits can be represented as a base bk number
with m = dn+1

k
e+ 1 digits.

Finally, we state a useful consequence of our representation. If we
have X as

X = (xnxn−1 . . . x1x0)b =

n∑
i=0

xib
i

Then

(xnxn−1 . . . xk 0 . . . 0)b =
n∑
j=k

xjb
j ≤ X (4.1)



4.2. IMPLEMENTATION 37

and

(xnxn−1 . . . (xk + 1) 0 . . . 0)b =

n∑
j=k

xjb
j > X (4.2)

For example, we have, xnb
n ≤ X < (xn + 1)bn and xnb

n + xn−1b
n−1 ≤

X < xnb
n + (xn−1 + 1)bn−1

4.2 Implementation

In this section we discuss the implementation of the multiple precision
integer arithmetic operations.

We use a computing machine, a computer. The computer is a binary
machine and all computations are done in the binary base. The computer
represents an unsigned number as an array of binary digits, bits, each
with a value of 0 or 1. The wordsize is the number of elements, or
digits, in the widest such bitarray the computer can use for primitive
operations. We are mainly concerned with positive integers, thus we use
only unsigned arithmetic.

The computer has some limitiations, however, we make only few as-
sumptions about the actual computing machine used for our implemen-
tation. One such assumption is that the computer can represent un-
signed numbers between 0 and 2w−1 where w is the wordsize. So 2w−1
is the largest number we can represent using only the basic, primitive,
datatypes available on our computer.

We are also assuming that our computer is capable of performing
primitive operations such as addition, subtraction, multiplication and
division using primitive datatypes, where we are mainly interested in
unsigned operations on the unsigned integer datatype.

We further assume that our computer performs these arithmetic op-
erations modulo 2w. One consequence of this assumption is that if there
is an overflow, or underflow, as a result of one of the primitive operations
the result will wrap and we have wraparound .

Elaborating further on the topic of wraparound, overflow and un-
derflow, assume we have two numbers in the largest primitive unsigned
integer datatype available, say x and y. Say that we, for example, add
x and y to compute the result s, then we have that if x + y > 2w − 1
then the result s of x+ y will be x+ y− 2w, when s is a w bit bit array.
We have seen this in sections 4.4, 4.5, 4.6 and 4.5 when we analysed the



38 CHAPTER 4. ELEMENTARY ARITHMETIC

primitive operations addition, subtraction, multiplication and division
respectively.

Now, looking at multiplication, the product of two w wide bit arrays
(words) requires at most a bit array that can hold the number (2w −
1)(2w − 1), which is 22w − 2w+1 + 1. For example, say we have w = 8,
then the maximum product of two 8 bit words is 216 − 29 + 1. We will
need at least a 16 element bit array to represent the maximum product
of two 8 bit numbers.

We have, essentially, two options when it comes to selecting the max-
imum digit given a computer with a wordsize of w. If we select the
maximum digit (base) as 2

w
2 , then we can use the computers prim-

itive multiplication without the risk of loosing parts of our result to
wraparound. However, if we do, we still have to handle the additions of
the products of a multiple precision integer with another multiple preci-
sion integer. That is, when we multiply our first factor with a digit from
the second factor the result will be an array of digits with a maximum
value of 2w−1. This array are then to be added to the rest of the arrays
resulting from each of the single digit products. To finally return to our
base 2

w
2 representation we need to perform a number of bit manipula-

tions and additions. A consequence of this selection of the base is that
the word arrays of the multiple precision integers are only used to half
their storage capacity.

If we instead select our base as the maximum wordsize w we will
again perform each of the primitive multiplications in the base 2

w
2 . And

the same bit manipulation will have to be done, but we can utilize the
full storage capacity of the word arrays.

Our conclusion is that, given a wordsize of w, we will perform prim-
itive multiplication of digits up to 2

w
2 − 1 without the risk of loosing

parts of the result because of truncation or wraparound. As we will
see later we will implement our primitive multiplication (and division)
using halfwords, i.e. we will do primitive multiplication and division in
the base 2

w
2 . And we will represent our multiple precision integers as

an array of digits with a maximum value of 2w − 1, i.e. in the base 2w.
We define two functions l(x) and h(x), they are the base 2

w
2 digits of

x where l(x) is the least significant part and h(x) the most significant

part, i.e. (x)2w = (h(x)l(x))
2
w
2

and x = h(x)b2
w
2 + l(x).

A new notation is introduced, we write

x = [xnxn−1 . . . x1x0]w



4.3. MULTIPLE PRECISION ARITHMETIC 39

instead of
x = (xnxn−1 . . . x1x0)2w

to represent an array of n w bit words.

4.3 Multiple precision arithmetic

We store our multiple precision integers in an array of words with the
computer’s maximum available wordsize for unsigned arithmetic (w).

So, if we have the number X as

X = (xnxn−1 . . . x1x0)b =

n∑
i=0

xib
i

where xn 6= 0 we will store it as shown in figure 4.1.

0 1 2 n− 1 n
X: n xn xn−1 · · · x1 x0

Figure 4.1: Representation

The first element of the array holds the number of available positions
for digits in the array, this we will call the size of the array. The least sig-
nificant digit is stored in the rightmost position. We define the length of
a multiple precision integer as the number of positions (digits), counted
from the left, to the last nonzero digit. So, for example, our number X
above can be stored as in figure 4.2, where the size of X is n+ 3 and the
length of X is n.

0 1 2 3 4 5 2 + n 3 + n
X: n+ 3 0 0 0 xn xn−1 · · · x1 x0

Figure 4.2: Representation, size and length

As indicated we consider the arrays to start at index 0. We will
mainly use pointers to address the individual elements of the array in
our implementation. A pointer is an index into the computers memory,
the memory cell used to hold a pointer thus contains an address into the



40 CHAPTER 4. ELEMENTARY ARITHMETIC

computers memory. We dereference the pointer, that is, we access the
memory cell it points to by saying *p where p is a pointer.

We could have chosen not to let our datastructure hold the size of
the array. However, storing the size in the zeroth position allows us to
cleanly call arithmetic functions without bothering the user (program-
mer) to manage the size of multiple precision integers and also we can
conveniently write X[*X] for the size of a multiple precision integer.

4.4 Addition

Addition computes the sum of two terms, z = x + y. We examine
primitive addition in the decimal base (b = 10). That is, let xi and yi
be two numbers where 0 ≤ xi, yi < b. The primitive addition operation
computes zi in (czi)b = (xi)b + (yi)b.

xi\yi 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

Figure 4.3: Result zi of primitive addition (xi)b + (yi)b = (czi)b in base
b = 10

.

The maximum value of a digit is b − 1 so the maximum result of
primitive addition is (b− 1) + (b− 1) = 2b− 2 = 1b1 + (b− 2)b0, in base
10 we have (xi)10 + (yi)10 ≤ 18.

In figure 4.3 we see that if (xi)b+(yi)b ≥ b then (zi)b is (xi)b+(yi)b−b
(shaded cells) and we need two digits to represent the actual result. Also,
it is clear that if one of the terms is zero the sum is less than b and can
be represented in a single digit. We also see that whenever xi + yi ≥ b



4.4. ADDITION 41

the resulting zi is less than xi and also less than yi, i.e. if xi + yi ≥ b
then zi < xi and zi < yi.

Long addition

Long addition is the algorithm we recognize as the standard pen and
paper method for addition of large numbers. It consists of tabulating the
terms, one above the other (figure 4.4), and then performing primitive
additions with carry over into the next primitive addition.

xn xn−1 · · · x1 x0

+ yn yn−1 · · · y1 y0

zn+1 zn zi−1 · · · z1 z0

Figure 4.4: Long addition (Z = X + Y ).

We examine, more closely, the addition of two numbers in a base b.
Consider two numbers X and Y :

X = (xnxn−1 . . . x1x0)b =

n∑
i=0

xib
i

Y = (ynyn−1 . . . y1y0)b =

n∑
i=0

yib
i

Adding X and Y to get the sum Z = X + Y :

Z = (zn+1zn . . . z1z0)b =

n+1∑
i=0

zib
i

consists of calculating the primitive additions of each xi and yi. When-
ever xi + yi ≥ b, which would give zi ≥ b, violating our representation,
we must also carry the overflow into the next digit zi+1. Since we know
that (xi)b + (yi)b ≤ 2b − 2 we know that the overflow which we must
carry over from digit i to digit i + 1 will be at most b which translates
into adding 1 to digit zi+1.



42 CHAPTER 4. ELEMENTARY ARITHMETIC

So, for addition base b let

ci =

{
0 if xi + yi < b
1 if xi + yi ≥ b

then (cizi)b = (xi)b + (yi)b + (ci−1)b and c0 = 0.
We can make use of the fact that if (czi)b = (xi)b+(yi)b and xi+yi ≥ b

then zi < xi and zi < yi to detect such an overflow.

Algorithm 1. Addition.
The addition algorithm adds two positive integers to produce the

sum.

In: Integers A = (anan−1 . . . a1a0)b and B = (bn, bn−1 . . . b1b0)b where
A and B are greater than zero and each have n + 1 digits in the
base b.

Out: The sum, S = A+B = (sn+1sn . . . s1s0)b.

1: c = 0
2: for i = 0 . . . n do
3: si = (ai + yi + c) mod b
4: if si < b then
5: c = 0
6: else
7: c = 1
8: end if
9: end for

10: return S = (sn+1sn . . . s1s0)b

The addition algorithm (algorithm 1) executes n primitive additions
to compute its result. The computational complexity of the addition
algorithm is linear, i.e. addition belongs to O(n).

Primitive addition

The primitive addition is the simplest of our primitive operations. We
know that the sum of two base b words is at most 2b− 2, our words are
w bits long and our base is 2w. We can represent the sum of two w bit
words with w + 1 bits since we need one extra bit for the carry.



4.4. ADDITION 43

a
b

s = a+ b

Figure 4.5: Addition registers.

The sum s is the sum of x, y and the carry from the previous iteration,
c. If there was an overflow in the addition x + y then we set the carry
for the next iteration (line 6 in listing 4.1).

We have [x]w + [y]w + [c]1 = [s]w, where [c]1 is the one bit carry from
the previous operation. If, after the addition, [s]w < [x]w, [s]w < [y]w or
if [s]w < [c]1 then we set the new carry to 1, else to 0.

void
mp_add_p(mp_limb_t *s, mp_limb_t *c,

mp_limb_t x, mp_limb_t y)

5 *s = *x + *y + c;
*c = (*s < *x) || (*s < *y) ||

(*s < c) ? 1 : 0;
}

Listing 4.1: Primitive addition

Multiple precision addition

Addition consist of repeatedly performing primitive addition of the dig-
its of the same positional value of the terms and adding in the carry
from the previous operation. The size of the sum must be at least the
length of the largest of the terms. Thus the sum will be large enough
to hold the sum of the terms, with the exeption of the carry from the
final primitive addition which is returned. Since the terms may be of
different lengths the implementation must handle the different cases, i.e.
len(X) ≤ len(Y ) or len(X) > len(Y ). We also want the addition to be
in-place safe, that is, we expect the statement X = X + Y to provide a
meaningful result.

We start by adding the digits of the terms up til the length of the
smallest term. Continuing we only have to add in the carry from the
first part, and follow it through to the end of the longest term. If the



44 CHAPTER 4. ELEMENTARY ARITHMETIC

X

Y

S

Figure 4.6: Sum (S) and terms (X and Y ).

sum is larger than the longest of the terms we must also zero out the
remaining digits of the sum.

Looking at listing 4.2, we start by finding the lengths of X and Y and
the minimum length of X and Y on lines 8 to 11. If the size of S is less
than the length of X or the length of Y then we can not compute the
sum and an error is generated (line 13). On lines 16 to 18 pointers to
the digits of S, X and Y are initialized, the pointers s, x and y initially
point to the least significant digit of the sum and the terms. Also the
initial carry is set to zero at line 20. Now the initializations are done
and we continue with the main task of adding the terms together.

mp_limb_t
mp_add(mp_t S, mp_t X, mp_t Y)
{

mp_limb_t c, t;
5 mp_size_t i, k, n, m, AL, BL;

mp_limb_t *s, *x, *y, *p;

XL = mp_len(A);
YL = mp_len(B);

10

n = XL < YL ? XL : YL;

if (*S < XL || *S < YL)
MP_ERR(MP_ERR_RESSIZEOPLEN);

15

s = S + *S;
x = X + *X;
y = Y + *Y;



4.4. ADDITION 45

20 c = 0;

for (i = 0; i < n; i++) {

t = *x + c;
25 c = ((t < *x) || (t < c)) ? 1 : 0;

t += *y;
c += t < *y ? 1 : 0;
*s = t;
s--;

30 x--;
y--;

}

if (XL > YL) {
35 p = x;

m = XL;
} else {

p = y;
m = YL;

40 }

for (i = n; i < m; i++) {

t = *p + c;
45 c = ((t < *p) || (t < c)) ? 1 : 0;

*s = t;
s--;
p--;

}
50

if (*S > m) {

*s = c;
s--;

55 m++;

for (i = m; i < *S; i++) {



46 CHAPTER 4. ELEMENTARY ARITHMETIC

*s = 0;
60 s--;

}
}

return c;
65 }

Listing 4.2: Addition

We are going to add all the digits of the shortest term to the corre-
sponding digits of the longest term to form the n first digits of the sum,
thus we iterate from 0 (least significant digit) to digit n − 1. The digit
sum is computed in a temporary register t. First (line 24) the carry is
added to the current digit of the term X. At the beginning of the loop
c holds the carry from the previous iteration. If an overflow occurs, i.e.
if x contained b − 1 and c is 1, the carry is set to 1 else it is cleared
(set to 0), now c represents the current carry instead (line 25). Next, a
digit from the other term (Y , line 26) is added and again we check for
overflow on line 27. Finally, the digit sum is stored as the resulting digit
of S (line 28) and the pointers s, x and y are decreased so that they
point to the next more significant digit of S, X and Y respectively (lines
29 to 31), and we are ready for the next iteration.

After line 32 the major work of the addition is complete. What
remains is to add the carry to the remaining digits of the longest term
and repeatedly check for overflow until we are done with all the digits
of the longest term.

First we find the length of the longest term (lines 34 to 40) and let
the pointer p point to the first remaining digit of the longest term, i.e.
digit n. We save the length of the longest term in m. So, we iterate
from n to m− 1, i.e. n−m times (line 42).

Adding in the carry follows the same patterns as the main addition.
The previous carry is added to the term and saved in t (line 44), we
check for overflow (line 45) and either set or clear the carry which now
represents the carry from this iteration. The resulting digit of the sum
is stored (line 46) and the pointers are decreased (lines 47 to 48).

Now, the last remaining task is to take care of the final carry and
possibly clear (zero) remaining digits of the sum. First we check if we
have to do anything, i.e. if S is longer than m (line 51). If so we save
the final carry in digit s, step the pointer and increase m (lines 53, 55
and 54 respectively). We now continue to clear the rest of the digits in



4.5. SUBTRACTION 47

S, thus we start at m and go from m to ∗S − 1, setting each digit to
zero and stepping the pointer as we iterate, lines 57 to 60).

Finally, we leave the result in S and return the last carry (line 64).
The return value will only ever be set if S is the same size as the length
of the longest term. If S is longer the carry will be stored in the most
significant word of the sum and the return value will be zero.

4.5 Subtraction

Subtraction computes the difference of two terms z = x−y. We examine
primitive subtraction in the decimal base (b = 10). Let xi and yi be two
numbers 0 ≤ xi, yi < b. The primitive subtraction operation computes
zi in (czi)b = (xi)b − (yi)b.

xi\yi 0 1 2 3 4 5 6 7 8 9
0 0 9 8 7 6 5 4 3 2 1
1 1 0 9 8 7 6 5 4 3 2
2 2 1 0 9 8 7 6 5 4 3
3 3 2 1 0 9 8 7 6 5 4
4 4 3 2 1 0 9 8 7 6 5
5 5 4 3 2 1 0 9 8 7 6
6 6 5 4 3 2 1 0 9 8 7
7 7 6 5 4 3 2 1 0 9 8
8 8 7 6 5 4 3 2 1 0 9
9 9 8 7 6 5 4 3 2 1 0

Figure 4.7: Result zi of primitive subtraction (xi)b − (yi)b = (czi)b in
base b = 10

.

The minimum value of a digit is 0 and and the maximum value is b−1
so the minimum result of a primitive subtraction is 0− (b− 1) = 1− b.
In base 10 we have (xi)10 − (yi)10 ≥ −9.

In figure 4.7 we see that if (xi)b < (yi)b then (zi)b is (xi)b − (yi)b +
b (shaded cells) and X must have at least one additional digit more
significant than xi for the result to be positive. Also, it is clear that if yi
is zero the difference is equal to xi and if the terms are equal the result
is zero. We also see that whenever xi < yi the resulting zi is greater
than xi, i.e. if xi < yi then zi > xi.



48 CHAPTER 4. ELEMENTARY ARITHMETIC

Long subtraction

Long subtraction is the algorithm we recognize as the standard pen and
paper method for subtracting a large number from another large number.
It, just like the long addition, consists of tabulating the terms one above
the other (figure 4.8), and then performing primitive subtractions with
borrowing from the next digit (next primitive subtraction).

xn xn−1 · · · x1 x0

− yn yn−1 · · · y1 y0

zn zn−1 · · · z1 z0

Figure 4.8: Long subtraction (Z = X − Y ).

We examine, more closely, the subtraction of a number from another
number in a base b. Consider two numbers X and Y , where X ≥ Y :

X = (xnxn−1 . . . x1x0)b =

n∑
i=0

xib
i

Y = (ynyn−1 . . . y1y0)b =

n∑
i=0

yib
i

Subtracting Y from X to get the difference Z = X − Y :

Z = (znzn−1 . . . z1z0)b =

n∑
i=0

zib
i

consists of calculating the primitive subtractions of each yi from xi.
Whenever xi < yi, we have an underflow which would give zi < 0,
violating our representation, we must borrow from the next digit zi+1.

Since we know that (xi)b−(yi)b ≥ −(b−1) we know that the underflow
which we must borrow from the next digit (digit i+ 1) is at most b− 1.
This translates into subtracting one from digit zi+1. So, for subtraction
base b let

ci =

{
0 if xi ≥ yi
−1 if xi < yi

We make use of the fact that if (czi)b = (xi)b− (yi)b and xi < yi then
zi > xi to detect such an underflow.



4.5. SUBTRACTION 49

Algorithm 2. Subtraction.
The subtraction algorithm computes the difference between two pos-

itive integers.

In: Integers A = (anan−1 . . . a1a0)b and B = (bn, bn−1 . . . b1b0)b where
A and B are greater than zero, A ≥ B and each with n+ 1 digits
in the base b.

Out: The difference, D = A−B = (dndn−1 . . . d1d0)b.

1: c = 0
2: for i = 0 . . . n do
3: di = (ai − yi + c) mod b
4: if di > 0 then
5: c = 0
6: else
7: c = −1
8: end if
9: end for

10: return d = (dndn−1 . . . d1d0)b

The subtraction algorithm (algorithm 2) executes n primitive sub-
tractions to compute its result. The computational complexity of the
subtraction algorithm is linear, i.e. subtraction belongs to O(n).

Primitive subtraction

Primitive subtraction is very similar to primitive addition. We know
that the difference between two base b words it no larger than b − 1 so
we know we can represent the difference of two w bit words in w + 1
bits, i.e. the difference and a carry.

a
b

d = a− b

Figure 4.9: Subtraction registers.

The difference d is the difference of x and y with the carry (borrow)
from the previous iteration, so we have d = x − y − c. If there is an



50 CHAPTER 4. ELEMENTARY ARITHMETIC

underflow in the subtraction we set the carry for the next iteration (line
6 in listing 4.3).

We have [x]w− [y]w− [c]1 = [d]w, where [c]1 is the one bit carry from
the previous operation. If, after the subtraction, [s]w > [x]w, [s]w > [y]w
or if [s]w > [c]1 then we set the new carry to 1, else to 0.

void
mp_sub_p(mp_limb_t *d, mp_limb_t *c,

mp_limb_t x, mp_limb_t y)

5 *d = *x - *y -c;
*c = (*d > *x) || (*d > *y) ||

(*d > c)? 1 : 0;
}

Listing 4.3: Primitive subtraction

Multiple precision subtraction

Subtraction, like addition, consists of repeatedly performing the prim-
itive operation on the digits of the same positional value of the terms
and handling the carry from the previous operation. The size of the
difference must be at least the length of the first operand (minuend),
and the minuend must be at least as large as the subtrahend. The im-
plementation must be able to handle the case where the subtrahend is
shorter than the minuend. We also want the subtraction to be in-place
safe, thus we expect the statement X = X - Y to provide a meaningful
result.

We start by subtracting the digits of the subtrahend from the digits
of the minuend up until the length of the subtrahend. Continuing we
only have to subtract the carry from the first part, and follow it through
to the end of the minuend. If the size of the difference is even larger we
must also continue to zero out the remaining digits of the difference.

Looking at listing 4.4, we start by finding the lengths of X and Y and
the minimum length of X and Y , on lines 8 to 11. If the size of D is less
than the length of X or the length of Y then we can not compute the
difference and an error is generated (line 13). Furthermore, if X < Y
then the difference would be negative and we generate an error (line 17).
On lines 21 to 23 the pointers to the digits of D, X and Y are initialized.
The pointers d, x and y initially point to the least significant digit of



4.5. SUBTRACTION 51

the difference, the minuend and the subtrahend. The initial carry is set
to zero on line 25. Now the initializations are complete and we continue
with the main task of subtracting.

void
mp_sub(mp_t D, mp_t X, mp_t Y)
{

mp_size_t i, n, XL, YL;
5 mp_limb_t c0, c1, t;

mp_limb_t *d, *x, *y;

XL = mp_len(X);
YL = mp_len(Y);

10

n = XL < YL ? XL : YL;

if (*D < XL || *D < YL) {
MP_ERR(MP_ERR_RESSIZEOPLEN);

15 }

if (mp_lt(X, Y)) {
MP_ERR(MP_ERR_NEG);

}
20

d = D + *D;
x = X + *X;
y = Y + *Y;

25 c0 = c1 = 0;

for (i = 0; i < n; i++) {

t = *x;
30 c1 = t < c0 ? 1 : 0;

t -= c0;
c1 += t < *y ? 1 : 0;
t -= *y;
*d = t;

35 d--;
x--;



52 CHAPTER 4. ELEMENTARY ARITHMETIC

y--;
c0 = c1;

}
40

for (i = n; i < XL; i++) {

c1 = *x < c0 ? 1 : 0;
*d = *x - c0;

45 c0 = c1;
d--;
x--;

}

50 if (*D > XL) {
for (i = XL; i < *D; i++) {

*d = 0;
d--;

55 }
}

}

Listing 4.4: Subtraction

We are going to subtract all the digits of the subtrahend from the
corresponding digits of the minuend to form the first n digits of the
difference, we start from 0, the least significant digit, and iterate n times,
arriving at n − 1. The digit differences are computed in a temporary
register t. At the beginning of the loop the carry from the previous
iteration is held in c0. First (line 29) the digit of the minuend is stored
in t, then, on line 30, we check if the result of subtracting the carry
from the current minuend digit will result in an underflow. If so, then
the new carry is set to one, else it is set to zero. Then (line 31) the
carry is subtracted from the current digit. Next we check if the result
of subtracting the subtrahend digit from t will result in an underflow, if
so, we set the carry. Note that the carry will only be set once, either on
line 30 or on line 32. We subtract the digit from the subtrahend from t
(line 33) and store the result in the current digit of the difference on line
34. Finally we decrease the pointers d, x and y, set the carry so that
c0 contains the carry from this iteration, and we are ready for the next
iteration.



4.6. MULTIPLICATION 53

After line 39 the major work of the subtraction is complete. What
remains is to subtract the carry from the remaining digits of the min-
uend, repeatedly checking for underflow, until we are done with all the
digits of the minuend.

We iterate from n to XL, where XL is the length of the minuend,
line 41. Subtracting the carry follows the same pattern as the main
subtraction. We check if the subtraction of the previous carry will result
in an underflow (line 43), if it does we set the next carry, if not we
clear the next carry. Then we subtract the previous carry from the
current digit of the minuend (line 44), set c0 to c1 so that the carry from
this iteration will be the carry from the previous iteration in the next
iteration (line 45), finally we decrease the pointers and we are ready for
the next iteration (lines 46 and 47).

Now, the last remaining task is to clear (zero) the remaining digits
of the difference. First we check if we have to do anything, i.e. if D is
longer than XL (line 50). If so, then we iterate from XL to the size of D
(∗D, line 51), setting each remaining digit of the difference to zero and
decreasing the pointer as we iterate, lines 53 and 54.

Finally, we leave the result in D. There will never be a remaining
carry since we require that X ≥ Y .

4.6 Multiplication

Multiplication computes the product of two factors. For two natural
numbers a and b multiplication is the repeated addition of a b times:
a+ a+ · · ·+ a = a · b.

We examine primitive multiplication in the decimal base (b = 10). Let
xi and yi be two numbers 0 ≤ xi, yi < b. The primitive multiplication
operation computes zi in (czi)b = (xi)b · (yi)b.

Since the maximum value of a digit is b − 1 the maximum value
of the product of two single digit factors (primitive multiplication) is
(b−1) · (b−1) = b2−2b+1. To represent b2−2b+1 = (b−2)b1 +1b0 we
need two digits. It is also obvious (figure 4.10) that if one of the factors
is zero then the product is also zero and if one of the factors is one the
product is equal to the other factor.



54 CHAPTER 4. ELEMENTARY ARITHMETIC

xi\yi 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Figure 4.10: Result zi of primitive multiplication xi · yi = (czi)b in base
b = 10

.

Long multiplication

Long multiplication is the algorithm we recognize as the standard pen
an paper method of multiplying two large numbers with each other. It
consists of tabulating the two numbers, one above the other (figure 4.11
and figure 4.12), and then repeatedly performing primitive multiplication
to produce the intermediate products which are finally added together.

xn · · · x1 x0

· y0

zn · · · z1 z0

Figure 4.11: Long multiplication (Z = X · y0).

We start by examining multiplication of an n+ 1 digit number with
a single digit number (figure 4.11). Consider the two numbers

X = (xnxn−1 . . . x1x0)b =

n∑
i=0

xib
i



4.6. MULTIPLICATION 55

and Y = (y0)b. Multiplying X and Y to get the product Z = X · Y :

Z =

n∑
i=0

xiy0b
i = (zn+1zn . . . z1z0)b =

n+1∑
i=0

zib
i

consists of calculating the primitive multiplications of each xi with y.
Whenever xi · y ≥ b, which would give zi ≥ b, violating our representa-
tion, we must also carry the overflow into the next digit.

Since we know that (xi)b · (y)b ≤ b2 − 2b + 1 = (b − 2)b + 1 we also
know that the overflow which we must carry over from digit i to digit
i + 1 will be at most (b − 2)b1 which translates into adding c, where c
satisfies xi · yi = cb+ r, to digit i+ 1. So, for multiplication base b, let

ci = bxi · yi + ci−1

b
c

then (zi)b = (xi)b · (yi)b + (ci−1)b and c0 = 0.

xn · · · x1 x0

· ym · · · y1 y0

z(0,n) · · · z(0,1) z(0,0)

z(1,n) · · · z(1,1) z(1,0)

+ z(m,n) · · · z(m,1) z(m,0)

zm+n+1 · · · · · · z1 z0

Figure 4.12: Long multiplication (Z = X · Y ).

Now, for multiplication of two numbers X and Y , where

X = (xnxn−1 · · ·x1x0)b =

n∑
i=0

xib
i

Y = (ymym−1 · · · y1y0)b =

m∑
j=0

yjb
j

we repeatedly, for each yj , apply the technique we used above to multiply
an n+ 1 digit number with a single digit number (see figure 4.12) to get



56 CHAPTER 4. ELEMENTARY ARITHMETIC

m+ 1 numbers Zj where

Zj = (z(j,n+1)z(j,n) . . . z(j,1)z(j,0))b =

n+1∑
i=0

z(j,i)b
i

and finally summing them multiplied by their respective base multiplier
to get the m+ n+ 2 digit number:

Z =

m∑
k=0

Zkb
k = (zm+n+1zm+n . . . z1z0)b

Examining primitive multiplication in base bk we find that xy ≤
(bk − 1)(bk − 1) which we can write b2k − 2bk + 1. Now, if we have X
and Y in base bk as

X = (xnxn−1 . . . x1x0)bk =

n∑
i=0

xi(b
k)i

Y = (ymym−1 . . . y1y0)bk =

n∑
j=0

yj(b
k)i

then we can write, by theorem 21:

xi = (x′1x
′
0)bk−1

yj = (y′1y
′
0)bk−1

So, multiplying xi · yi then consists of computing (x′1x
′
0)bk−1 · (y′1y′0)bk−1

which is

1∑
i=0

1∑
j=0

x′iy
′
j(b

k−1)i+j = x′1y
′
1(bk−1)2 + (x′1y

′
0 + x′0y

′
1)bk−1 + x′0y

′
0

We note that (y)bk−1 · (x)bk−1 = cbk−1 + z which we can represent as
(cz)bk = (x·y)bk . So we have (x′i)bk−1 ·(y′j)bk−1 = (x′i ·y′j)bk for 0 ≤ i ≤ 1
and 0 ≤ j ≤ 1. Now taking the sum

1∑
i=0

1∑
j=0

(x′iy
′
j)bk (bk)i+j



4.6. MULTIPLICATION 57

we get

(x′1 · y′1)bk (bk)2 + (x′1 · y′0 + x′0 · y′1)bkb
k + (x′0 · y′0)bk

So we have (x)bk · (y)bk = (z2z1z0)bk , where:

(z0)bk = (x′0)bk−1 · (y′0)bk−1

cbk + (z1)bk = (x′1)bk−1 · (y′0)bk−1 + (x′0)bk−1 · (y′1)bk−1

(z2)bk = (x′1)bk−1 · (y′1)bk−1 + c

We can now compute (x)bk · (y)bk by computing (x′1x
′
0)bk−1 · (y′1y′0)bk−1 .

This will be useful.

Algorithm 3. Multiplication.
The multiplication algorithm computes the product of two positive

integers.

In: Two integers, A andB, with n+1 andm+1 base b digits respectively,
where A = (anan−1 . . . a1a0)b and B = (bm, bm−1 . . . b1b0)b such
that A,B ≥ 0, A ≥ B,

Out: The product, P = A ·B = (pn+m+1pn+m . . . p1p0)b.

1: for i = 0 . . . n+m+ 1 do
2: pi = 0
3: end for
4: for i = 0 . . .m do
5: c = 0
6: for j = 0 . . . n do
7: (uv)b = pi+j + aj · bj + c
8: pi+j = v
9: c = u

10: end for
11: pi+j+1 = u
12: end for
13: return P = (pn+m+1pn+m . . . p1p0

The multiplication algorithm (algorithm 3) executes (n + 1)(m + 1)
primitive multiplications to compute its result. The computational com-
plexity of the algorithm is quadratic, i.e. our multiplication algorithm,
algorithm 3, belongs to O(n2). There are better algorithms.



58 CHAPTER 4. ELEMENTARY ARITHMETIC

x1 x0

· y1 y0

x1 · y0 x0 · y0

+ x1 · y1 x0 · y1

x1 · y1 x1 · y0+ x0 · y0

x0 · y1

Figure 4.13: Primitive multiplication base b = 2
w
2 .

Primitive multiplication

Remember that we in section 4.6, calculated the product of two base bk

numbers by representing them as four base bk−1 numbers and computed
their product. Also, recall that the maximum product of two base b
numbers is b2 − 2b + 1 (section 4.6), thus we know that it is always
possible to store the result of the product of two w bit words in two w
bit words.

The goal is to compute p = [p1p0]w, the two w bit words that is the
result of the multiplication of x and y. We have that

p1 = x1 · y1 + h(x1 · y0 + x0 · y1)

p0 = l(x1 · y0 + x0 · y1) + x0 · y0

The two factors x and y are in base 2w. We divide them into four base
2

w
2 numbers, x1 = h(x), x0 = l(x), y1 = h(y) and y0 = l(y) (lines

9 to 13 in listing 4.5). The multiplication of the two base 2
w
2 numbers

(x1x0)
2
w
2

and (y1y0)
2
w
2

is performed according to our multiple precision

multiplication as in figure 4.10.
First the intermediate values t = x1 · y0, u = x0 · y1 and v = t + u

are computed, where t and u are base 2w numbers in w bit words. It is
v, the sum of t and u, that we are primarily interested in. We divide v
into two base 2

w
2 numbers v1 and v0 so that h(v1) = 0, l(v1) = h(v) and

h(v0) = l(v), l(v0) = 0 (lines 19 to 20), we then have v1 = [0 h(v)]w
2

and

v0 = [l(v) 0]w
2

, see figure 4.14.

If t+u resulted in an overflow we add 2
w
2 to v1 as a carry (lines 22 and

23). Since v1 is a w
2

bit integer in a w bit word there is room for the carry.
Now v1 holds [c h(x1 ·y0 +x0 ·y1)]w

2
and v0 holds [l(x1 ·y0 +x0 ·y1) 0]w

2
.

We compute p0 as y0 · x0 + v0 and p1 as x1 · y1 + v1 (lines 25 to 27).



4.6. MULTIPLICATION 59

[m1]w [m0]w

[m′3]w
2

[m′2]w
2

[m′1]w
2

[m′0]w
2

p1 p0

x1 · y1 x0 · y0

v1 v0

x1 · y0 + x0 · y1

Figure 4.14: Multiplication registers. mi andm′j represent w bit memory
cells and w

2
bit cells respectively.

If there was an overflow in the computation of p0 we add 1 to p1. And
now p1 and p0 contains the product of x and y.

void
mp_mul_p(mp_limb_t *p1, mp_limb_t *p0,

3 mp_limb_t x, mp_limb_t y)
{

mp_limb_t x1, x0;
mp_limb_t y1, y0;
mp_limb_t t, u, v, v1, v0, c;

8

x0 = x & ((1 << w/2) - 1);
x1 = x >> w/2;

y0 = y & ((1 << w/2) - 1);
13 y1 = y >> w/2;

t = y0 * x1;
u = y1 * x0;
v = t + u;

18

v0 = v << w/2;
v1 = v >> w/2;

if (v < t || v < u)
23 v1 += 1 << w/2;



60 CHAPTER 4. ELEMENTARY ARITHMETIC

*p0 = y0 * x0 + v0;
c = p0 < v0 ? 1 : 0;
*p1 = c + x1 * y1 + v1;

28 }

Listing 4.5: Primitive multiplication

Multiple precision multiplication

We have the factors X and Y , where X = (xn xn−1 ...x1 x0)b and
Y = (ym ym−1 . . . y1 y0)b. Multiplication consists of two phases; first
each digit from one of the factors is multiplied by the other factor, i.e.
yj ·X = Pj . The second phase sums the intermediate results multiplied
by their respective positional factor, to form the final product. That
is, we have P =

∑m
i=0 Pib

i. In our implementation the two phases
are interleaved, the separate intermediate products are never formed
individually, instead they are summed to the final product during each
iteration.

The product P of the n + 1 digit number X and the m + 1 digit
number Y will have (at most) n + m + 2 digits. Thus the size of P
must be n+m+ 2 w bit words. We want to avoid dynamic allocation of
temporary space so we do not require the multiplication to be in-place
safe, i.e. we do not allow statements like X = X ·Y . For convenience and
readability we use the array notation instead of the pointer notation, so
we write P[i] instead of *(p+i).

Now to multiply X with Y to form P we simply iterate over the m+1
digits of the factor Y . During each of the m + 1 iterations we iterate
over the n + 1 digits of the factor X. It is in this inner loop the main
work of the multiplication is performed. Each digit from the factor Y
is multiplied with all the digits from the factor X and then added, with
carry, to the product P . The outer loop advances to the next digit of
the factor Y and the primitive multiplications are repeated for this digit.
Thus, the final product accumulates in P .

Looking at listing 4.6 we start by detecting if in-place multiplication
is mistakenly attempted, if so, an error is generated (line 8). Then we
find the lengths of the factors (X and Y ) as XL and YL.

Next, we detect special cases. If eitherX or Y is zero then the product
will also be zero. If XL is zero then there was no significant digits in X
and thus X must be zero. At line 18 we check the factors and set P to
zero if any of the factors are zero. If X or Y is one then the product



4.6. MULTIPLICATION 61

will be Y , or X, respectively. This we detect on lines 24 and 30. Note
that the comparison operation will be discussed later, see section 5.1. If
P = 1 · Y we set P to Y , on line 26. If P = X · 1 we set P to X, on
line 32. If no special cases were detected P is initialized to zero prior
to the twin loops of the multiplication (line 36). Now the special cases
have been handled and P is initialized. We can continue with the main
task of multiplying X with Y .

void
mp_mul(mp_t P, mp_t X, mp_t Y)
{

5 mp_size_t XL, YL, i, j;
mp_limb_t c, p1, p0, x;

if (P == X)
MP_ERR(MP_ERR_INPLACE);

10

XL = mp_len(X);
YL = mp_len(Y);

if (*P < (XL + YL)) {
15 MP_ERR(MP_ERR_RESSIZEOPLEN);

}

if (XL == 0 || YL == 0) {

20 mp_zero(P);
return;

}

if (mp_eq(X, mp_One)) {
25

mp_set(P, Y);
return;

}

30 if (mp_eq(Y, mp_One)) {

mp_set(P, X);



62 CHAPTER 4. ELEMENTARY ARITHMETIC

return;
}

35

for (i = 1; i <= *P; i++) {
P[i] = 0;

}

40 for (i = 0; i < YL; i++) {

c = 0;

for (j = 0; j < XL; j++) {
45

mp_mul_p(&p1, &p0, X[*X - j],
Y[*Y - i]);

p0 += c;
50 if (p0 < c)

p1++;
x = P[*P - i - j];
p0 += x;
if (p0 < x)

55 p1++;
P[*P - i - j] = p0;
c = p1;

}

60 P[*P - i - XL] = p1;
}

}

Listing 4.6: Multiplication

We are going to multiply each of the digits of Y , yi, 0 ≤ i < YL with
each of the digits of X, xj , 0 ≤ j < XL. The outer loop, lines 36 to

61, computes P =
∑YL
i=0 Pib

i. The inner loop, over j, lines 44 to 58,

computes Pib
i in P .

Looking at the inner loop, we iterate j from 0 to XL (line 44) and
perform the primitive multiplication of digit j of X, i.e. xj with digit
i of Y (yi). We use our primitive multiplication operation from section



4.7. DIVISION 63

4.6, mp_mul_p, to multiply xj with yi, the result is returned in p1 and
p0. We now have [yi]w · [xj ]w in [p1p0]w. We add the carry from the
previous iteration, c, to p0 and handle an eventual overflow, lines 49 to
51.

Continuing, we add our new result, p0 to the accumulated result in
P . First we get Pi+j in x (line 52), then we add p0 and x, checking for
overflow, line 53 to 55. If there is an overflow adding the accumulated
product digit with the new partial result we increase p1 by one. Finally
we update the result, setting Pi+j to the new partial result (line 56) and
we also set the new carry to p1 (line 57). Returning to the beginning of
the loop we now see that the carry c that is added to p0 is the high part
of the result of the primitive multiplication, i.e. p1 from the previous
iteration.

After the inner loop is completed we must handle the last remaining
digit, i.e. the high part from the final primitive multiplication which is
to be added to digit i+XL. Since digit i+XL will always be zero when
we reach line 60 we can simply set Pi+XL to p1.

The outer loop initializes the carry (c, line 42), executes the inner
loop and takes care of the last remaining digit. The product is returned
in P .

4.7 Division

Division computes the quotient and remainder of the dividend when
divided by the divisor. For two numbers X and Y we have X = Q·Y +R.

We examine primitive division in the decimal base (b = 10). Let xi
and yi be two numbers, where 0 ≤ xi < b and 0 < yi < b. The primitive
division operation computes qi and ri in (xi)b = (qi)b · (yi)b + (ri)b.

From figure 4.15 (shaded areas) we see that the quotient is undefined
if the divisor is zero (yi = 0) and that the quotient is zero if the dividend
is zero, i.e. if xi = 0 then qi = 0. We also see that if the divisor is one
the quotient is equal to the divisor (yi = 1 implies qi = yi). Further, if
yi > xi then the quotient is zero. More important is that if yi ≥ b

2
the

quotient is either zero or one, i.e. qi ∈ {0, 1}.
Examining figure 4.16 we see that the remainder is undefined if the

divisor is zero (yi = 0). If the dividend is zero then the remainder is
zero, i.e. if xi = 0 then ri = 0 and if the divisor is one the remainder is
also zero, i.e. if yi = 1 then ri = 0, since all numbers are evenly divisible
with one. We also see that if the divisor is equal to the dividend then



64 CHAPTER 4. ELEMENTARY ARITHMETIC

xi\yi 0 1 2 3 4 5 6 7 8 9
0 - 0 0 0 0 0 0 0 0 0
1 - 1 0 0 0 0 0 0 0 0
2 - 2 1 0 0 0 0 0 0 0
3 - 3 1 1 0 0 0 0 0 0
4 - 4 2 1 1 0 0 0 0 0
5 - 5 2 1 1 1 0 0 0 0
6 - 6 3 2 1 1 1 0 0 0
7 - 7 3 2 1 1 1 1 0 0
8 - 8 4 2 2 1 1 1 1 0
9 - 9 4 3 2 1 1 1 1 1

Figure 4.15: Quotient qi of primitive division bxi/yic = qi in base b = 10

.

xi\yi 0 1 2 3 4 5 6 7 8 9
0 - 0 0 0 0 0 0 0 0 0
1 - 0 1 1 1 1 1 1 1 1
2 - 0 0 2 2 2 2 2 2 2
3 - 0 1 0 3 3 3 3 3 3
4 - 0 0 1 0 4 4 4 4 4
5 - 0 1 2 1 0 5 5 5 5
6 - 0 0 0 2 1 0 6 6 6
7 - 0 1 1 3 2 1 0 7 7
8 - 0 0 2 0 3 2 1 0 8
9 - 0 1 0 1 4 3 2 1 0

Figure 4.16: Remainder ri of primitive division xi−bxi/yic = ri in base
b = 10

.

the remainder is zero, i.e. if yi = xi then ri = 0, since any number is
divisible by itself. Finally, if the divisor is greater than the dividend the
remainder is equal to the dividend, i.e. if yi > xi then ri = yi, since no
number is divisible by a number greater than itself.



4.7. DIVISION 65

Long division

Long division is the algorithm we recognize as the standard pen and
paper method of dividing a long number (dividend) with another long
number (divisor). It consists of tabulating the two numbers (figure 4.17)
and then repeatedly computing the quotient digits and a remainder until
all the quotient digits and the final remainder are calculated.

qn−mqn−m−1 · · · q1 q0
ymym−1 · · · y1y0 | xn+1 xn · · · x1 x0

−zm+1 zm · · · z1 z0

rn rn−1 · · · rn−mxn−m−1

− zm+1 zm · · · z1 z0

rn−1 rn−2 · · · rn−m−1xn−m−2

zm+1 zm · · · z1 z0

rm+1 rm · · · r1 x0

− zm+1 zm · · · z1 z0

rm · · · r1 r0

Figure 4.17: Long division (X = QY +R).

We examine division by considering division of an n+ 1 digit number
X with an m+ 1 digit number Y . We have

X = (xnxn−1 . . . x1x0)b =

n∑
i=0

xib
i

Y = (ymym−1 . . . y1y0)b =

n∑
j=0

yjb
j

and wish to calculate the m−n digit quotient and the m digit remainder

Q = (qn−mqn−m−1 . . . q1q0)b =

n−m∑
k=0

qkb
k

R = (rmrm−1 . . . r1r0)b =

m∑
l=0

rlb
l



66 CHAPTER 4. ELEMENTARY ARITHMETIC

We determine the quotient digits iteratively, by computing each qk where
n−m ≤ k ≤ 0 in

Rk+1 = qkY b
k +Rk

starting with k = n−m going to 0 and Rn−m+1 = X. Then we have

qk =
⌊Rk+1

Y bk

⌋
and

Rk = Rk+1 − qkY bk

Determining each quotient digit consists of finding the largest factor (qk)
that when multiplied with Y bk divides Rk+1. The product qkY is at least
m digits and at most m + 1 digits. We (humans) have little problem
calculating (or guessing) the quotient digits, however, we are interested
in a method to estimate, and then correct the estimate to find the the
quotient digits, which require only a few number of primitive operations.

We would like to establish that q̂ in

(xnxn−1)b = q̂ym + r̂

is a good estimate of the true quotient digit q in

X = qY bm−n−1 + r

We assume that xn < ym, this will ensure that the quotient digit q
is less than b, i.e. q ≤ b − 1. We are also assuming that the divisor is
normalized , i.e. that ym ≥ b b2c, see section 4.7.

We know by theorem 4 that q′ ≤ q if y′ > y in x = qy + r and x =
q′y′+ r′ and also, by equation 4.1, that if X = (xn xn−1 . . . x1 x0)b then
(xn xn−1)bb

n−1 ≤ X and by equation 4.2 that (xn (xn−1+1))bb
n−1 > X.

Thus if we have Y = (ym ym−1 . . . y1 y0)b and

X = qY bn−m−1 +R, 0 ≤ R < Y bn−m−1

(xnb+ xn−1)bn−1 = q̂ymb
n−1 + r̂, 0 ≤ r̂ < ym



4.7. DIVISION 67

then we see that

qymb
n−1 ≤ qY bn−m−1

≤ X
< (xnb+ xn−1 + 1)bn−1

≤ (xnb+ xn−1 + 1)bn−1 − 1

= (xnb+ xn−1)bn−1 + bn−1 − 1

< (q̂ + 1)ymb
n−1 + bn−1 − 1

≤ ((q̂ + 1)ym − 1)bn−1 + bn−1 − 1

= (q̂ + 1)ymb
n−1 − 1

and we have that qymb
n−1 ≤ ym(q̂ + 1)bn−1 − 1 or qymb

n−1 < ym(q̂ +
1)bn−1 thus q < q̂ + 1 and then we can say that

q̂ ≤ q (4.3)

Continuing, we see that

q̂ymb
n−1 ≤ (xnb+ xn−1)bn−1

≤ X
< (q + 1)Y bn−m−1

≤ (q + 1)Y bn−m−1 − 1

< (q + 1)(ym + 1)bn−1 − 1

≤ (q + 1)(ymb
n−1 + bn−1 − 1)− 1

= (q + 1)(ym + 1)bn−1 − (q + 1)− 1

= (q + 1)(ym + 1)bn−1 − (q + 2)

< (q + 1)(ym + 1)bn−1

So we have qym < (q + 1)(ym + 1) which gives qym < ym(q + 1) + q + 1
and

qym ≤ (q + 1)ym + q (4.4)

Now, since xn < ym we must have that q̂ ≤ b− 1. We now have two
possibilities, first if q ≥ b− 1 then we trivially have

q̂ ≤ q (4.5)



68 CHAPTER 4. ELEMENTARY ARITHMETIC

Second, if instead q < b− 1 then, since ym is normalized, i.e. ym ≥ b b2c
or 2ym ≥ b − 1, we have that q < 2ym. So from equation 4.4 above we
see

q̂ym ≤ (q + 1)ym + q < (q + 1)ym + 2ym < (q + 3)ym

or
q̂ ≤ q + 2 (4.6)

So we have from equation 4.3 that q̂ ≥ q and from equation 4.5 that
q̂ ≤ q if q ≥ b− 1 and finally q̂ ≤ q+ 2 if q > b− 1 from equation 4.6, we
can now conclude that

q ≤ q̂ ≤ q + 2 (4.7)

This means our estimate (q̂) is either correct or larger than the true
quotient and if it is not correct (larger) then it is at most off by two.

Algorithm 4. Division.
The division algorithm computes the quotient and remainder when a

positive integer is divided by another positive integer.

In: Two integers A and B with n+1 and m+1 base b digits respectively,
i.e. A = (anan−1 . . . a1a0)b and B = (bm, bm−1 . . . b1b0)b, such that
A ≥ 0, B ≥ 0, n ≥ m ≥ 1 and bm 6= 0.

Out: The quotient, Q = ( qn−mqn−m−1 . . . q1q0 , )b and the remainder
R = ( rmrm−1 . . . r1r0 )b such that A = QB+R, where 0 ≤ R < B.

1: for j = 0 . . . n−m do
2: qj = 0
3: end for
4: while A ≥ Bbn−m do
5: qn−m = qn−m + 1
6: A = A−Bbn−m
7: end while
8: for i = n . . .m+ 1 do
9: if ai = bm then

10: qi−m−1 = b− 1
11: else
12: qi−m−1 = baib+ai−1

bm
c

13: end if
14: while qi−m−1(bmb+ bm−1) ≥ aib2 + ai−1b+ ai−2 do
15: qi−m−1 = qi−m−1 − 1



4.7. DIVISION 69

16: end while
17: A = A− qi−m−1Bb

i−m−1

18: if A < 0 then
19: A = A+Bbi−m−1

20: qi−m−1 = qi−m−1 − 1
21: end if
22: end for
23: R = A
24: return (Q,R)

For each iteration, lines 8 to 22, the division algorithm (algorithm 4)
executes 1 + (m+ 2) primitive multiplications. The first one on line 14.
Since the divisor is normalized we assume it is extended with one digit,
and we have m + 2 multiplications on line 17. For each iteration the
algorithm executes one primitive division (line 12).

Before termination the algorithm will execute n − m iterations. In
total we will have (n−m)(m+ 4) primitive operations (multiplications
and divisions).

If k = n−m and l = 2m−n we have (n−m)(m+4) = k(k+ l+4) =
k2 +kl+ 4k, thus our division algorithm, algorithm 4, belongs to O(k2).
There are better algorithms.

Primitive division

Our primitive division computes q in x = qy + r where x is a two digit
base bk number and y is a single digit base bk number, i.e. x is stored
in two w bit word unsigned integers and y in a one w bit word unsigned
integer. We divide x into four base bk−1 numbers and y into two bk−1

numbers, i.e. x is represented as four w
2

bit unsigned integers and y as
two w

2
bit unsigned integers.

x = [x1x0]w = [x′3x
′
2x
′
1x
′
0]w

2

y = [y]w = [y1y0]w
2

The goal is to compute the two w bit words of q = [q1q0]w and the w bit
word of [r]w. This is done by calculating q = [q2q1q0]w

2
and r = [r1r0]w

2

and ending with a change to a w bit representation. That is, we use the
base change theorem (theorem 21) and we have that bk = B2 = 2w and

bk−1 = B = 2
w
2 .



70 CHAPTER 4. ELEMENTARY ARITHMETIC

So we want to divide [x′3x
′
2x
′
1x
′
0]w

2
by [y1y0]w

2
using the schoolbook

long division, see an example in figure 4.18. We are going to use some
techniques to facilitate the computation. The first trick is not to separate
the w bit x1 and x0 into four distinct w

2
bit words, instead we will let

them remain in the original two w bit words and handle the base change
on the fly. We do this in r1 and r0.

q 0 5 4 [q2q1q0]w
2

y x 6 3 / 3 4 5 6 [y1y0]w
2

[x′3x
′
2x
′
1x
′
0]w

2

q2 · y - 0 0
r2 3 4 5 r2

q1 · y - 3 1 5
r1 0 3 0 6 r1

q0 · y - 2 5 2
r0 0 5 4 r0

r2 =
(
[x′3x

′
2]w

2
− [q2]w

2
· [y1y0]w

2

)
2

w
2 + [x′1]w

2

r1 =
(
r2 − [q1]w

2
· [y1y0]w

2

)
2

w
2 + [x′0]w

2

r0 = r1 − [q0]w
2

[y1y0]w
2

Figure 4.18: Long division example.

Next, we will assume that the divisor, y is normalized , i.e. that the
first digit of the divisor ym is greater than b b

2
c or 2ym + 1 ≥ b. In

our case greater than 2
w
2

2
. One effect of normalization is that the most

significant bit in the binary representation of the digit will be set. If
ym is normalized then the value of (x)b/(ym)b will be either 1 or 0, see
section 4.7. We will also require that the first digit of the divisor is
greater than the first digit of the dividend, i.e. [y1]w

2
> [x′3]w

2
, this

will ensure that we will only have to execute two iterations of the long
division algorithm because [q2]w

2
will always be zero.

Finally, and possibly most important, computing the exact quotient
digit immmediately requires multiple precision division which we do not
have so we are going to first compute an estimate of the quotient digit
then check it and adjust it if it is incorrect.



4.7. DIVISION 71

[m1]w [m0]w

[m′3]w
2

[m′2]w
2

[m′1]w
2

[m′0]w
2

x
x1 x0

h(x1) l(x1) h(x0) l(x0)
y

y1 y0

h(y) l(y)
r

r1 r0

h(r1) l(r1) h(r0) l(r0)
q

q1 q0

Figure 4.19: Division registers.

Looking at listing 4.7, we start by dividing y into two w
2

bit words, y1

and y0 (lines 10 and 11). We do not explicitly divide x1 and x0, instead
we will shift the bits in [x1]w and [x0]w to align as required. We work
with the remainder in ∗r, so we set it to x1, the two most significant
half-words of the dividend (line 13).

Our first attempt at the first quotient digit q1 is

q1 =
⌊ [x1]w

[y1]w
2

⌋
=
⌊ [x′3x

′
2]w

2

[y1]w
2

⌋
since [x1]w holds [x′3 x′2]w

2
, see listing 4.7 on line 15. We know from

theorem 4 and section 4.7 that our estimate of the quotient digit will be
greater than or equal to the true quotient digit. Thus we must check
and possibly correct our guess.

In the end the first remainder will have been computed as [x1]w −
([q1]w

2
· [y1 y0]w

2
. However, the computation of the first remainder and

the correction of the quotient digit guess is interleaved. First we set
the remainder to ∗r = [x1]w − [q1]w

2
· [y1]w

2
and v = [q1]w

2
· [y0]w

2
,

which will be subtracted later. This will leave the high half of [∗r]w
empty. See the computation of r1 in figure 4.18 for an illustration. Next



72 CHAPTER 4. ELEMENTARY ARITHMETIC

(line 18) we shift ∗r so that the low part becomes the high part and
we also shift in the high part of [x0]w, i.e. [x′1]w

2
. ∗r now contains(

[x′3 x
′
2]w

2
− [q1]w

2
· [y1]w

2

)
2

w
2 + [x′1]w

2
.

Now we are ready to check and correct our guess. If ∗r is greater
than or equal to v, where v = [q1]w

2
· [y0]w

2
, then we have the correct

quotient digit and we are done with q1. If not, that is, if ∗r is less than
v we decrease q1 by one and add back [y]w to r1 (lines 20 to 23). We
check again (line 25). If ∗r ≥ y and ∗r < v then q1 is still off by one
so we repeat the correction, we again decrease q1 and subtract y from
∗r (lines 23 to 24). We happen to know that the error in our quotient
guess is never larger than two (equation 4.7), so we will never need to
correct more than twice.

Finally we subtract v from ∗r to finish the computation of the first
qotient digit. Now ∗r holds [x′3 x

′
2 x
′
1]w

2
− [q1]w

2
· [y1y0]w

2
.

We now continue with q0. The computation of q0 follows the same
pattern as our previous computation of q1. First, on line 29, q0 is esti-
mated as

q0 =
⌊ [r1]w

[y1]w
2

⌋
Then we compute ∗r. In the end we will have computed ∗r as ∗r −
[q0]w

2
· [y1 y0]w

2
. But again the computation of ∗r and the correction of

q0 is interleaved. We set the remainder to ∗r = [∗r]w − [q0]w
2
· [y1]w

2
and

v = [q0]w
2
· [y0]w

2
(lines 30 to 31). This leaves the high half of ∗r empty.

We shift in x′0, see line 32.
If ∗r ≥ v then q0 is correct and we only have to subtract v from r0. If

not (r0 < v) then we adjust q0 by subtracting one and adding back y to
∗r (lines 37 to 38). We check again, if ∗r ≥ y and r0 < v (line 39) then we
need to adjust again, by subtracting one from q0 and adding back y to ∗r
(lines 38 to 39). The final operation is to subtract v, which we now know
we can do, from ∗r (line 41). Now we have ∗r = [r1]w − [q0]w

2
· [y1y0]w

2
.

Finally we return the result, quotient in [q]w as [q]w = [q1q0]w
2

(line

43) and the remainder is already in [∗r]w.

void
mp_div_p(mp_limb_t *q, mp_limb_t *r,

mp_limb_t x1, mp_limb_t x0, mp_limb_t y)
{

5 mp_limb_t y1, y0;



4.7. DIVISION 73

mp_limb_t r1, r0;
mp_limb_t q1, q0;
mp_limb_t v;

10 y1 = y >> w/2;
y0 = y & ((1 << w/2) - 1);

*r = x1;

15 q1 = *r / y1;
v = q1 * y0;
*r -= q1 * y1;
*r = (*r << w/2) | (x0 >> w/2);

20 if (*r < v) {

do {
q1 -= 1;
*r += y;

25 } while (*r >= y && *r < v);
}
*r -= v;

q0 = *r / y1;
30 v = q0 * y0;

*r -= q0 * y1;
*r = (*r << w/2) | (x0 & ((1 << w/2) - 1));

if (r0 < v) {
35

do {
q0 -= 1;
*r += y;

} while (*r >= y && *r < v);
40 }

r0 -= v;

*q = (q1 << w/2) | q0;



74 CHAPTER 4. ELEMENTARY ARITHMETIC

}

Listing 4.7: Primitive division

Multiple precision division

Division is the most complex of the four elementary arithmetic opera-
tions. It consists of repeatedly calculating the quotient digits, subtract-
ing the intermediate products, qi · Y , from the current position, thus
iteratively forming the quotient Q and the remainder R.

To directly compute the correct current quotient digit we need mul-
tiple precision division. But we are currently implementing multiple
precision division so we will have to find an alternative technique to
determine the correct quotient digits. Our strategy is to estimate the
quotient digit, check the estimate and correct it if it is incorrect.

To simplify our task we divide our implementation into a main divi-
sion routine, mp_div which makes use of the four subroutines mp_norm,
mp_div_mulsubn, mp_div_addn and the primitive division mp_mul_p.

mp_norm normalizes the provided operand and computes the shift off-
set. Normalization consists of shifting the operand so that it is larger
than b b

2
c. In this context normalization implies shifting the operand so

that it’s highest bit is set. As usual we have X = (xn xn−1 . . . x1 x0)b
and Y = (ym ym−1 . . . y1 y0)b. mp_div_mulsubn computes the product of
a single digit and a multiple precision number and subtracts the product
from a minuend, starting at position i going to i + m. In other words,
mp_div_mulsubn computes X−q·Y ·bi. mp_div_addn computes X+Y ·bi,
i.e. it adds Y to X starting at position i going to i+m. We also make
use of the primitive multiplication routine, mp_mul_p.

Normalization

To normalize X we multiply X by a constant so that X ≥ b b
2
c. Our

base is b = 2w and thus, a normalized divisor is larger than or equal to
2w−1. This implies that the highest bit of the divisor must be set.

Our computer works in the base 2 and we have primitive bit manip-
ulation operations, such as shift, at our disposal. An efficient strategy
to normalize the operand is to multiply it with 2s, i.e. to shift it left s
times so that the highest bit of the most significant word in the operand
is set.



4.7. DIVISION 75

void
mp_norm(mp_limb_t *s, mp_t R, mp_t X)
{

mp_size_t i, XL;
5 mp_limb_t x;

XL = mp_len(X);
x = *(X + 1 + *X - XL);

10 for (i = 0; x; i++)
a >>= 1;

*s = w - i;
(void)mp_sl(R, X, *s);

}

Listing 4.8: Normalization

First we find the length of the operand, XL (line 7), then we fetch
the highest digit of X (line 8). The least significant digit (x0) of X is in
X + ∗X (see section 4.3). We want to find xn. The length of X is XL,
so X+∗X−XL points to xn+1 and X+∗X−XL+ 1 thus points to xn.

We then shift x right until x is zero, lines 10 and 11. So in i we
have the position of the highest set bit of the most significant digit of
X. Then w − i is the length of the zero prefix of the most significant
digit of X which we store in s at line 12.

Finally, at line 13, we shift X left s bits and return the normalized
operand in R. Note that s is also provided to the caller. The normal-
ization routine makes us of mp_sl, the left shift routine. Our implemen-
tation of left shift is in place safe and so is normalization, thus we can
write mp_norm(&s, X, X) for X = norm(X).

Addition at digit position n

In our calculation of the quotient digits we first compute an estimate of
the current quotient digit, check it and correct it until it the estimate
is correct. We check the quotient digit by subtracting the product q̂Y bi

from the current remainder. If there is an underflow in the subtraction
then clearly q̂ was too large. We adjust q̂ by decreasing it with one ,then
we must also add back Y bi to the current remainder. Adding back Y bi

is the task performed by mp_div_addn.



76 CHAPTER 4. ELEMENTARY ARITHMETIC

mp_div_addn is a specialized implementation of addition and follows
the same pattern as the general addition described in section 4.4. How-
ever, multiplication by bi will have the effect of adding digits of Y start-
ing at digit position i of X, see figure 4.20.

ri+m ri+m−1 · · · ri+1 ri · · · r1 r0

+ ym ym−1 · · · y1 y0

Figure 4.20: Addn.

Looking at listing 4.9 we start by finding the lengths of X and Y in
XL and YL. We check that the inputs are valid, i.e. that the length of
X and Y is at least 2 (lines 11 and 14), that the size of X is at least the
size of Y (line 17) and that the size of R is equal to the size of X (line
20). Then the pointers r, x and y are initialized to the least significant
digit of R, X and Y respectively (lines 23 to 25).

mp_limb_t
mp_div_addn(mp_t R, mp_t X, mp_t Y, mp_size_t n) {

mp_size_t XL, YL;
5 mp_size_t i;

mp_limb_t *r, *x, *y, c, t;

XL = mp_len(X);
YL = mp_len(Y);

10

if (YL < 2)
MP_ERR(MP_ERR_OPSIZE);

if (XL < 2)
15 MP_ERR(MP_ERR_OPSIZE);

if (*X < YL)
MP_ERR(MP_ERR_OPSIZE);

20 if (*X != *R)
MP_ERR(MP_ERR_RESSIZEOPLEN);

r = R + *R;



4.7. DIVISION 77

x = X + *X;
25 y = Y + *Y;

for (i = 0; i < n; i++) {

*r = *x;
30 r--;

x--;
}

c = 0;
35

for (; i < YL; i++) {

t = *x + c;
c = (t < *x) || (t < c) ? 1 : 0;

40 t += y;
c += (t < *y) ? 1 : 0;

*r = t;
r--;

45 x--;
y--;

}

return c;
50 }

Listing 4.9: Addition, digit position n

Continuing, the low n digits of X will not be changed by the addition
so they are simply copied to R, lines 27 to 31. Also the initial carry is
set to zero, on line 34. We are now ready to proceed with the main task
of adding Y to X starting at digit n.

We iterate from n to YL, i.e. we will process digit n to digit n + m
(line 36).

The result to compute is xi + yi + ci−1 and the new carry ci. We
compute the result in a temporary variable t, by adding xi and the
previous carry on line 38 and then setting the new carry if an overflow
occured (line 39). Then we add yi to t (line 40) and once more check



78 CHAPTER 4. ELEMENTARY ARITHMETIC

and set the carry if an overflow occured on line 41. We set the result,
∗r, to t (line 43).

Finally the pointers are decreased to refer to the next digits, lines 44
to 46 and this iteration is complete.

When all digits have been processed we return c, so that an overflow
in the addition is indicated to the caller.

Multiply and subtract

Our calculation of the quotient digits in division first estimates the quo-
tient digit, then we check if it is correct, if not we repeatedly correct
it until it is good. To check the quotient digit for correctness we must
evaluate if the product of the quotient digit and the divisor is larger than
the current remainder at the current position.

We have the dividend X = (xn xm−1 . . . x1 x0 )b, the remainder
R = ( rk rk−1 . . . r1 r0 )b where 0 ≤ k ≤ n and the divisor Y =
( ym ym−1 . . . y1y0 )b. We need to calculate R− qiY bi, where i = k−m.

Multiplying Y by bi implies that the n lowest digits of X will remain
the same after the operation. We start by setting the n lowest digits of
R to the n lowest digits of X. Then we execute the main loop of the
mp_div_mulsubn routine where we make use of the mp_mul_p routine to
multiply and subtract q̂Y bi from R. Finally we handle the last digit and
return the last carry. That is, if q̂Y bi > X we will return an overflow.

Looking at listing 4.10, at line 10 we get the lengths of X and Y in
XL and YL respectively. Then we check so that X is longer than two
digits (line 13) and that the result of the operation will fit in R (line 16).

On lines 19 to 21 the pointers x, y and r are initialized to the least
significant digit of x, y and r. Next the low digits of R, which will not
be touched by the operation, are copied from X to R and p0 and c0 are
initialized (lines 30 to 31).

We are now ready to enter the main loop where the computation of
X − q̂Y bi is performed. We iterate over the length of Y , i.e. from 0 to
YL (line 33).

First we compute the product of q̂ and the current divisor digit (y)
to p2 and t, high and low part respectively (line 35). Initially p0 is zero,
but on subsequent iterations p0 will hold the higher part of the result
from the previous round, i.e. the carry from the multiplication in the
previous round, see figure 4.21. p0 and t are added (line 37) and we
check for overflow (line 38). If there is an overflow p1 is increased with
one (line 39). We now continue to subtract our result from the dividend



4.7. DIVISION 79

i p1 p0

0: h(q̂y0) l(q̂y0)
1: l(q̂y1) l(q̂y1)
... · · ·
m: h(q̂ym) l(q̂ym)

ri+m+1 ri+m · · · · · · ri+1 ri · · ·
Figure 4.21: Mulsubn.

(X). First, we check for underflow (line 40), which we save in c1. Then
we subtract p0 from x and also the carry, c0 from the previous round
(borrow), on lines 41 and 43. We also need to check for underflow once
more, line 42.

mp_limb_t
mp_div_mulsubn(mp_t R, mp_t X, mp_t Y,

mp_limb_t q, mp_size_t n) {

5 mp_size_t RL, XL, YL, i;

mp_limb_t p1, p0, t, c1, c0;
mp_limb_t *x, *y, *r;

10 YL = mp_len(Y);
XL = mp_len(X);

if (XL < 2)
MP_ERR(MP_ERR_OPSIZE);

15

if (*R <= YL)
MP_ERR(MP_ERR_RESSIZEOPLEN);

y = Y + *Y;
20 x = X + *A;

r = R + *R;

for (i = 0; i < n; i++) {



80 CHAPTER 4. ELEMENTARY ARITHMETIC

25 *r = *x;
r--;
x--;

}

30 p0 = 0;
c0 = 0;

for (i = 0; i < YL; i++) {

35 mp_mul_p(&p1, &t, *y, q);

p0 += t;
if (p0 < t)

p1++;
40 c1 = (*x < p0) ? 1 : 0;

*r = *x - p0;
c1 += (*x < c0) ? 1 : 0;
*r -= c0;
p0 = p1;

45 c0 = c1;
y--;
x--;
r--;

}
50

c1 = (*x < p1) ? 1 : 0;
*r = *x - p1;
c1 += (*x < c0) ? 1 : 0;
*r -= c0;

55

return c1;
}

Listing 4.10: Multiply and subtract, digit position n

Finally we update p0 and c0 for the next round on lines 44 and 45,
and decrease the pointers so that they point to the next digits to be
processed (lines 46 to 48).

To finish the computation we need to handle the last digit. We check
for underflow and subtract p1 from x and also subtract the previous



4.7. DIVISION 81

carry c0 from x (lines 51 and 52 to 54). Note that we must check for
underflow when subtracting c0, on line 53. If there an underflow occured
when subtracting either the last term or the last carry we return it. Also
note that mp_div_mulsubn is in place safe, that is we can write

mp_div_mulsubn(X, X, Y, q, i)

and we will get the expected result in X.

Division routine

The division routine consists of two main parts. First, initialization and
handling of special and error cases and then the main loop where the
quotient digits are calculated. The initialization and handling of special
and error cases is described in the next section. The main computational
loop is described in the following section.

Initialization

The first part of the division routine, lines 10 to 89, consists of initial-
ization and handling of special cases.

First we find the lengths of the dividend X in XL and of the divisor
Y in YL (lines 10 and 11). Then we check the special cases.

If the length of the dividend is zero then all digits of the divisor is zero
and thus the divisor is zero. Division by zero is undefined and results in
an error (line 13).

If the length of the dividend is one we check for division by one,
by two or for single digit division (divisor and dividend are single digit
numbers). If the divisor is one (line 20) we simply set the remainder to
zero and the quotient to the dividend (lines 22 and 23) and return.

If the divisor is two the remainder is zero if the dividend is even and
one if the dividend is odd. We use the mp_even function and simply set
the remainder accordingly on lines 29 to 32. We shift the dividend left
one bit, set the quotient to the result (line 33) and return.

If both the divisor and the dividend are single digit numbers (line
37) we use the native division and remainder operators to compute the
result, lines 42 and 44 respectively.

If the length of the dividend (X) is less than the length of the divisor
(Y ) then the dividend is less than the divisor and the quotient is zero.
We set the quotient to zero (line 53) and the remainder to the dividend
(line 54).



82 CHAPTER 4. ELEMENTARY ARITHMETIC

If the dividend and the divisor are of the same length (line 58) we
check if the divisor is less than the dividend, line 60. If it is then, just
like above, we set the quotient to zero (line 62), the remainder to the
dividend (line 63) and return. If the dividend and the divisor are equal,
line 67, the quotient is one (line 69) and the remainder is zero (line 70).

We continue checking two error cases. The size of the quotient must
be at least the size of the difference between the size of the dividend and
the size of the divisor. That is, if we have X = (xn xn−1 . . . x1 x0)b and
Y = (ym ym−1 . . . y1 y0)b then the qotient Q in X = Q · Y + R has at
most n−m digits and the remainder, R, has at most m+1 digits, where
X have n+ 1 digits and Y have m+ 1 digits.

So, if the quotient has less than XL − YL digits, line 75, we generate
an error. Also, if the remainder is smaller than the length of the divisor
(YL, line 78) an error is generated.

We are now done with the special cases and the error cases and can
continue with the initialization. First the divisor (Y ) is normalized, line
81. The number of bits shifted is returned in s. Normalization of the
divisor implies that it is multiplied by a constant to make it larger than
or equal to b b

2
c, in our case the divisor is multiplied by 2s. We must also

multiply the dividend with the same amount (shift left s bits). We will
use R to iteratively compute the remainder. So we shift X, the dividend,
left s bits and store the result in R. Thus R is now initialized (line 82).
We also set RL to the length of R (X, line 83) and the quotient to zero
(line 84).

For convenience we store the two most significant digits of the divisor
in y1 and y0 (line 85 and 86). These will be used later in estimation of
quotient digits. If the divisor is a single digit number we set y0 to zero
(line 86). We also initialize r and q to refer to (point to) what will be
the most significant digits of the remainder and quotient (lines 87 and
88).

Finally, v is initialized to zero (line 89). v is used to hold the most
significant digit of the remainder after trial division. v is essentially a
reverse carry.

We are now done with the preamble and can go on with the task of
dividing.

void
mp_div(mp_t Q, mp_t R, mp_t X, mp_t Y)
{



4.7. DIVISION 83

5 mp_size_t XL, YL, RL, i, s;

mp_limb_t *x, *r, *q;
mp_limb_t y1, y0, u, v, p2, p1, p0, pt;

10 XL = mp_len(X);
YL = mp_len(Y);

if (YL == 0) {

15 MP_ERR(MP_ERR_DIVZ);
}

if (YL == 1) {

20 if (*(Y + *Y) == 1) {

mp_set(Q, X);
mp_zero(R);
return;

25 }

if (*(Y + *Y) == 2) {

if (mp_even(X))
30 mp_zero(R);

else
mp_one(R);

(void)mp_sr(Q, X, 1);
return;

35 }

if (XL == 1) {

mp_zero(Q);
40 mp_zero(R);

*(Q + *Q) = *(X + *X) /
*(Y + *Y);

*(R + *R) = *(X + *X) %



84 CHAPTER 4. ELEMENTARY ARITHMETIC

45 *(Y + *Y);
return;

}

}
50

if (XL < YL) {

mp_zero(Q);
mp_set(R, X);

55 return;
}

if (XL == YL) {

60 if (mp_lt(X, Y)) {

mp_zero(Q);
mp_set(R, X);
return;

65 }

if (mp_eq(X, Y)) {

mp_one(Q);
70 mp_zero(R);

return;
}

}

75 if (*Q <= (XL - YL))
MP_ERR(MP_ERR_RESSIZE);

if (*R < YL)
MP_ERR(MP_ERR_RESSIZE);

80

mp_norm(&s, Y, Y);
(void)mp_sl(R, X, s);
RL = mp_len(R);
mp_zero(Q);



4.7. DIVISION 85

85 y1 = *(Y + 1 + *Y - YL);
y0 = (YL > 1) ? *(Y + 2 + *Y - YL) : 0;
r = R + 1 + *R - RL;
q = Q + *Q - (RL - YL);
v = 0;

90

for (i = 0; i <= (RL - YL); i++) {

mp_div_p(q, &u, v, *r, y);
adjust:

95 mp_mul_p(&pt, &p0, y0, *q);
mp_mul_p(&p2, &p1, y1, *q);

p1 += pt;
if (p1 < pt)

100 p2++;
if ((p2 > v) || ((p2 == v) &&

(p1 > *r)) || ((p2 == v) &&
(p1 == *r) &&
(p0 > *(r + 1)))) {

105

*q -= 1;
goto adjust;

}

110 if (mp_div_mulsubn(R, R, Y,
*q, (RL - YL) - i)) {

*q -= 1;
}

115

(void)mp_div_addn(R, R, Y,
(RL - YL) - i);

}

120 v = *r;
r++;
q++;

}



86 CHAPTER 4. ELEMENTARY ARITHMETIC

125 (void)mp_sr(Y, Y, s);
(void)mp_sr(R, R, s);

}

Listing 4.11: Division

Main loop

The main loop of the division routine first estimates the current quotient
digit using mp_div_p (line 93) to compute q̂i in

q̂i =
[rn−i rn−i−1]w

[ym]w
=
rn−ib+ rn−i−1

ym

We then check our guess q̂i. We know from equation 4.7 that the esti-
mate q̂i above is at most off by two and if it is incorrect it is larger than
the true quotient digit. Thus we will have to correct our quotient digit
guess at most two times. To detect an incorrect estimate we evaluate
q̂i · (ymb+ ym−1) > (rn−ib

2 + rn−i−1b+ rn−i−2), if the equality holds we
know that q̂i is too large.

We compute q̂i · (ymb+ym−1) by multiplying q and ym on line 95 and
by multiplying q and ym−1 on line 96. We then continue, adding the
middle halves together, line 98, if an overflow occured we add the carry
to p2, lines 99 and 100. We now have q̂i · (ymb+ ym−1) in [p2p1p0]w, see
figure 4.22.

ym ym−1

q̂
q̂ · ym

q̂ · ym−1

p2 p1 p0

Figure 4.22: Evaluating estimated quotient.

Then we compare P = q̂(ymb + ym−1) to the three most significant
digits of the current remainder, R = rn−ib

2 + rn−i−1b+ rn−i−2.
Say that we have two equal length numbers in the base b, i.e. X =

(xn xn−1 . . . x1 x0)b and Y = (yn yn−1 . . . y1 y0)b then we know, by
equation 4.1 that if xn > yn then X > Y and if xn < yn then X < Y . If



4.7. DIVISION 87

q̂(ymb+ ym−1): p2 p1 p0

rn−ib
2 + rn−i−1b+ rn−i−2: v ∗r ∗(r + 1)

Figure 4.23: First comparison.

xn = yn then we iteratively continue evaluating xn−i > yn−i, 0 < i ≤ n
to decide if X > Y .

If we have two base b numbers, U = (u2u1u0)b and V = (v2v1v0)b
we can decide if U > V by first comparing u2 and v2. If u2 > v2 then
U > V and if u2 < v2 then U 6> V . If u2 = v2 then we compare u1 and
v1 similarly, and finally we may have to compare u0 and v0. Thus we
get

U > V if
u2 > v2 or
u2 = v2 and u1 > v1 or
u2 = v2 and u1 = v1 and u0 > v0

(4.8)

We compare p2b
2+p1b+p0 to rn−ib

2+rn−i−1b+rn−i−2 by comparing
each of the digits of the two operands as in equation 4.8, line 101. If
we find that (p2 p1 p0)b is greater than (rn−i rn−i−1 rn−i−2)n then q̂
must be too large and we adjust our estimate by decreasing it with one
(line 106). We repeat the comparison and adjustment until (p2 p1 p0)b
no longer is larger than (rn−i rn−i−1 rn−i−2)b and we have a good first
guess for the current quotient digit.

We are now ready for a final check using all the digits of the divi-
sor and the current remainder (line 106). We use the mp_div_mulsubn

routine to compute R − q̂Y bi. If q̂Y bi > R then an underflow will be
indicated when mp_div_mulsubn returns a nonzero value and we adjust
q̂ again (line 113). If there was an underflow we must also add back Y bi

to R, using mp_div_addn (line 116). If q̂Y bi 6> R then we already have
the correct quotient digit and we are basically done with this iteration.
What remains is to update v with the new highest remainder digit ∗r,
line 120, and to increase the pointers r and q (lines 125 and 126).

The main loop is repeated n −m times to form the n −m quotient
digits of Q in X = QY + R. When all iterations are complete the one
thing that remains is to undo our normalization, which implies dividing
Y and R with 2s. I.e. we shift Y and R left s bits, lines 125 and 126.





Chapter 5

Other operations

5.1 Comparison

We often need to compare multiple precision numbers. We extend the
primitive comparison operators <, ≤, >, ≥, = and 6= so we can test the
relation between multiple precision numbers.

From equation 4.1 and equation 4.2 we know that, if we have X =
[xn xn−1 . . . x1 x0]w then [xn xn−1 . . . x1 0]w ≤ X. Extending the result
from the equations 4.1 and 4.2 we see, that if we have the two multiple
precision integers X and Y , as X = [xn xn−1 . . . x1 x0]w and Y =
[yn yn−1 . . . y1 y0]w where xi = yi for i = n . . . k, then if xk−1 ≤ yk−1

we have that X ≤ Y . This reasoning applies to the four comparison
operators <, ≤, >, ≥, see table 5.1.

xk−1 < yk−1 X < Y
xk−1 ≤ yk−1 X ≤ Y
xk−1 > yk−1 X > Y
xk−1 ≥ yk−1 X ≥ Y

Table 5.1: Multiple precision comparison.

Further, if xi = yi where i = n . . . 0, i.e. for all i, then X = Y . Also
if for any i we have that xi 6= yi then X 6= Y .

89



90 CHAPTER 5. OTHER OPERATIONS

The reasoning above applies for all equal length multiple precision
numbers. We also wish to be able to compare multiple precision numbers
of different sizes and lengths. It is easy to see that if X is longer than
Y then X must be greater than Y .

Looking at listing 5.1 we start by finding the lengths of X and Y in
XL and YL (lines 9 and 10). If X is longer, line 12, then X > Y and
we return 1 (line 14). Else, if X is shorter than Y (line 16) then X < Y
and we return −1, line 18.

int
mp_cmp(mp_t X, mp_t Y)
{

5 mp_size_t i, j;
mp_size_t XL, YL;
mp_limb_t *x, *y;

XL = mp_len(X);
10 YL = mp_len(Y);

if (XL > YL) {

return 1;
15

} else if (XL < YL) {

return -1;

20 } else if (XL == YL) {

x = X + *X - XL + 1;
y = Y + *Y - YL + 1;

25 for (i = 0; i < XL; i++) {

if (*x != *y) {

if (*x > *y) {
30

return 1;



5.1. COMPARISON 91

} else {

return -1;
35 }

}
x++;
y++;

}
40

return 0;
}

}

Listing 5.1: Comparison

If X and Y are of equal length (line 20) we must do more work. First,
we set up pointers to the most significant digits of X and Y respectively
on lines 22 and 23. Then we iterate over all digits of X and Y (line 25).
If any digits are not equal, line 27, we must have that either X > Y or
X < Y . We check if the current digit of X is greater than the current
digit of Y (line 29. If so then X > Y and we return 1 (line 31). Else
X < Y and we return −1 on line 34. If the digits are equal we step the
pointers on lines 37 and 38 and go on to the next digit.

If all of the digits of X and Y were equal then X and Y are equal
and we return 0 on line 41.

mp_eq: mp_cmp(X, Y) == 0
mp_neq: mp_cmp(X, Y) != 0
mp_gt: mp_cmp(X, Y) == 1
mp_gte: mp_cmp(X, Y) >= 0
mp_lt: mp_cmp(X, Y) == -1
mp_lte mp_cmp(X, Y) <= 0
mp_eqz: mp_cmp(X, mp_Zero) == 0
mp_neqz: mp_cmp(X, mp_Zero) != 0

Table 5.2: Comparison and equality operators.

Using the comparison routine described above (in listing 5.1) it is
simple to implement the comparison and equality operators, see table
5.2.



92 CHAPTER 5. OTHER OPERATIONS

5.2 Even and odd

The mathematical approach to determining if a number is even or odd is
to compute its remainder modulo 2, i.e. if N mod 2 is 0 then N is even,
if the result is 1 then N is odd. Computing the modulo operation on a
multiple precision number is not the most efficient way to determine if
it is odd or even. It is more efficient to test if the least significant bit is
set.

To determine if a multiple precision number is even or odd we com-
pute the bitwise AND of the least significant digit and 1. If the result is
one then the number is odd, see listing 5.2.

mp_limb_t
mp_odd(mp_t X)
{

return (X[*X] & 0x1);
5 }

Listing 5.2: Odd

A number which is not odd is even. Also, the number zero is neither
odd nor even. So, looking at listing 5.3, we first check if the number is
nonzero (line 4).

mp_limb_t
mp_even(mp_t X)
{

if (mp_neqz(X)) {
5 return 0 == mp_odd(X);

} else {
return 0;

}
}

Listing 5.3: Even

If it is zero, then it can not be even and we return 0 (line 7). If it is
nonzero we check if it is odd and return 1 if it is not, on line 5.

5.3 Length

We often need to find the length of a multiple precision number. We
have already defined the length as the number digits counted from the



5.4. SHIFT 93

least significant digit, to the last nonzero digit (in section 4.3). We also
defined the size as the number of positions in the array representing the
number (excluding the cell where the size is stored).

Now, to find the length of a multiple precision number, when we
know the size, we start from the most significant position and count the
positions until we find the first nonzero digit. Subtracting the number
of empty digits from the size gives the length.

Looking at listing 5.4 it all happens on line 7, we start by initializing
i to zero and the pointer d to point to the first possibly empty position
of the number N .

1 mp_size_t
mp_len(mp_t N)
{

mp_size_t i;
mp_limb_t *d;

6

for (i = 0, d = N + 1;
*d == 0 && i < *N; d++, i++)
;;

11 return (*N - i);
}

Listing 5.4: Length

Then, while i is less than the size of N , we count the empty positions
until we reach the first nonzero digit. That is, we increase d and i while
d refers to a zero and while i is less than the size of N . When we exit the
for loop we have the number of zero positions in i. Finally we return
the size of N minus the number of zero positions on line 11.

5.4 Shift

Mathematically, shifting a number left or right, is equivalent to multi-
plying or dividing by 2s where s is the shift. Computers normally have
efficient native instructions performing shifts to the right and to the left.
So, when multiplying or dividing a number by a power of two we want
to make use of the more efficient shift operations. Note that we wish
the shift operations to be in place safe, so that mp_sl(X, X, s) and
mp_sr(X, X, s) produces the expected result.



94 CHAPTER 5. OTHER OPERATIONS

Looking at listing 5.5, an implementation of multiple precision left
shift, we start by finding the length of X (line 9). We also check for
two special cases. First, if the length of X is zero (line 11), then there
is nothing to shift and we return doing nothing, line 12. Second, if the
requested number of shifts is zero (line 15 then we set R to X and return
zero, line 17 and 19. Note that, if the destination and the operand are
referring to the same memory cells, we conclude that there is no need to
actually copy X to R (line 16).

Before entering the main computational loop of the left shift routine
we set up pointers to the least significant digits of X and R (line 22 and
23) find least of the length of X and the size of R in k, line 24, and
finally, set the carry c to zero (line 25).

mp_limb_t
mp_sl(mp_t R, mp_t X, mp_size_t s)
{

mp_size_t XL;
5 mp_size_t i, k;

mp_limb_t c, d;
mp_limb_t *x, *r;

XL = mp_len(X);
10

if (XL < 1) {
return 0;

}

15 if (s == 0) {
if (R != X) {

mp_set(R, X);
}
return 0;

20 }

r = R + *R;
x = X + *X;
k = *R < XL ? *R : XL;

25 c = 0;

for (i = 0; i < k; i++) {



5.4. SHIFT 95

d = *x;
*r = (d << s) | c;

30 c = d >> (8 * sizeof (mp_limb_t) - s);

r--;
x--;

}
35

if (*R > k) {
*r = c;
for (i = k + 1; i < *R; i++) {

*(--r) = 0;
40 }

return 0;
} else {

return c;
}

45 }

Listing 5.5: Shift left

Now we enter the main loop, from line 27 to 33. We iterate over
the length of the shortest operand, i.e. k times. First we load d with
the current digit from X, line 28. Then we shift d s bits to the left
and include the bits left over from the previous shift in c and assign the
result to the current digit of the result (line 29). On line 30 we extract
the bits that we leave for the next iteration, to be included in the next
digit of R. Finally we step the pointers r and x on lines 32 and 33 and
continue with the next iteration.

When all digits of the shortest operand (X or R) have been processed
we check if the size of R is greater than k, i.e. if R is longer than X (line
36). If so then we include the leftover bits from the last iteration of the
main loop in the next position of R on line 37 and zero out the rest of
R, lines 38 to 39, and return zero (line 41).

If R is not longer than X we simply return the leftover bits from the
last shift as overflow (line 43).

The right shift routine follows the same pattern as the left shift dis-
cussed above. However, because of the requirement that it be in place
safe, it processes the digits in the opposite order from the left shift rou-
tine. The initial portion of the routine, lines 9 to 19 are identical. On
lines 22 and 23 pointers to the most significant digits of R and X are



96 CHAPTER 5. OTHER OPERATIONS

initialized. Then, on line 24 the minimum of the size of R and the length
of X are determined, in k.

Then the high, unused, part of R is set to zero, lines 26 to 27, the
carry c is zeroed on line 27 and we are ready to enter the main loop.

mp_limb_t
mp_sr(mp_t R, mp_t X, mp_size_t s)
{

mp_size_t XL;
5 mp_size_t i, k;

mp_limb_t c, d;
mp_limb_t *x, *r;

XL = mp_len(X);
10

if (XL < 1) {
return 0;

}

15 if (s == 0) {
if (R != X) {

mp_set(R, X);
}
return 0;

20 }

r = R + 1;
x = X + 1 + *X - XL;
k = *R < XL ? *R : XL;

25

for (i = 0; i < (*R - k); i++) {
*r++ = 0;

}

30 c = 0;

for (i = 0; i < k; i++) {

d = *x;
35 *r = c | (d >> s);



5.5. BIT OPERATIONS 97

c = d << (8 * sizeof (mp_limb_t) - s);

r++;
x++;

40 }

return c;
}

Listing 5.6: Shift right

The main loop, lines 34 to 39, shifts the digits of the argument X
right s bits. First d is loaded with the current digit from X. Then d is
shifted right s bits and the overflow bits from the previous iteration in c
are included before assigning the result to the current digit of r, line 36.
Next the remaining bits from the current digit are stored in c (line 36).
Finally the pointers are increased (lines 38 and 39) and we are ready for
the next iteration.

When all digits of X have been processed we return the overflow bits
from the last (rightmost) digit.

5.5 Bit operations

We also present routines for getting, setting and clearing bits. We also
provide a routine for counting bits, from the least significant up to the
most significant set bit.

The three routines for getting, setting and clearing bits are all similar.
The arguments are a multiple precision number N and the bit to get,
set or clear (n). The three routines consider the least signficant bit of
a multiple precision number to be bit zero. I.e. mp_getbit(N, 0) gets
the value of the least significant bit in N .

Looking at listing 5.7, we start by computing the digit which the bit
n is in, line 8. That is, counting from the least significant digit, the bit
n must be in digit b n

w
c where w is the bitwidth of a digit, i.e. the base

is 2w. We also find the index of the bit in the digit, i.e. we compute
n mod w (line 9). Thus the bit n is bit l · w + b, where l is the digit
position, counted from zero, and b is the index of the bit, also counted
from zero.

We check so that N is indeed at least l digits long, if not we generate
an error (line 11). Then we get the digit l from N (line 14) and return



98 CHAPTER 5. OTHER OPERATIONS

bit b of r. That is, we shift a one b steps to the left and compute the
bitwise and of r and the shifted one (line 15).

mp_limb_t
mp_getbit(mp_t N, mp_size_t n)
{

mp_size_t l;
5 mp_size_t b;

mp_limb_t r;

l = n / w;
b = n % w;

10

if (*N <= l)
MP_ERR(MP_ERR_INDEX);

r = N[*N - l];
15 return (r & (1 << b));

}

Listing 5.7: Get bit n.

The mp_clrbit routine is similar to mp_getbit and follows the same
pattern. The difference is on lines 14 to 16. First we get the digit and
mask out the bit we are interested in, line 14. Then we invert the shifted
one to get a digit with all bits set except the one we want to clear. We
then assign the bitwise and of the digit and the bitmask to the digit
(line 15). Finally we return the old value of the bit n. This is sometimes
convenient, since we do not have to first execute mp_getbit to save a bit
that we later want to restore.

mp_limb_t
mp_clrbit(mp_t N, mp_size_t n)
{

mp_size_t l;
5 mp_size_t b;

mp_limb_t r;

l = n / w;
b = n % w;

10

if (*N <= l)



5.5. BIT OPERATIONS 99

MP_ERR(MP_ERR_INDEX);

r = N[*N - l] & (1 << b);
15 N[*N - l] &= ~(1 << b);

return r;
}

Listing 5.8: Clear bit n

The routine mp_setbit is similar to mp_getbit and follows the same
pattern. mp_getbit. The only difference is on line 15. Instead of com-
puting the bitwise and of the inverted bit pattern we simply assign the
bitwise or of the shifted one to the target digit. I.e. the bit b of the
target digit will be set. As in the mp_clrbit function we return the old
value of the digit.

mp_limb_t
mp_setbit(mp_t N, mp_size_t n)
{

mp_size_t l;
5 mp_size_t b;

mp_limb_t r;

l = n / w;
b = n % w;

10

if (*N <= l)
MP_ERR(MP_ERR_INDEX);

r = N[*N - l] & (1 << b);
15 N[*N - l] |= (1 << b);

return r;
}

Listing 5.9: Set bit n

The routine mp_highbit finds the most significant set bit in a multiple
precision number. If we represent the number n in the base 2 then the
highest bit set of n corresponds to blog2(n)c. Note that, mp_highbit
below returns 1 if only the least significant bit is set. This is different
from the mp_getbit, mp_clrbit and mp_setbit routines above (listings



100 CHAPTER 5. OTHER OPERATIONS

5.7, 5.8 and 5.9) where the least significant bit has index zero. I.e.
mp_highbit returns the index of the highest set bit plus one.

Looking at listing 5.10 we start by finding the length of N (line 7)
and then we get the most significant digit (line 8).

mp_size_t
mp_highbit(mp_t N)
{

mp_size_t NL, i;
5 mp_limb_t n;

NL = mp_len(N);
n = N[*N + 1 - NL];

10 if (NL == 0) {

return 0;
}

15 i = 0;

while (n) {
n >>= 1;
i++;

20 }

return i + (NL - 1) * w;
}

Listing 5.10: Find the highest set bit.

If the length is zero, then there are no bits set and we return zero (lines
10 and 12). Else we go on to count the bits in the most significant word.
We start by initializing i to zero (line 15) and iterate over n, shifting n
right and increasing i in each iteration (lines 17 to 19). Eventually we
will have shifted out all bits of n and we have the number of bits to the
highest bit, counted from the left, in i.

On line 22 we compute the position of the highest set bit in N as the
number of bits below the most significant digit plus the number of bits
to the highest bit set in the most significant digit and return the result.



5.6. SIGNED ADDITION AND SUBTRACTION 101

5.6 Signed addition and subtraction

Our representation of multiple presicion numbers as an array of memory
cells holding the size of the array and a sequence of digits in the base
2w does not include any information about the sign of the number. One
simple extension to the representation would be to reserve one bit of
the cell holding the size for the sign of the number. However, since the
need for signed addition and subtraction is limited we instead provide
routines for signed addition and subtraction where we must handle the
sign separately.

Sign of X Sign of Y |X| ≥ |Y | |X| < |Y |
X > 0 Y > 0 (+1) · (X + Y ) (+1) · (X + Y )
X > 0 Y < 0 (+1) · (X − Y ) (−1) · (Y −X)
X < 0 Y > 0 (−1) · (X − Y ) (+1) · (Y −X)
X < 0 Y < 0 (−1) · (X +B) (−1) · (X + Y )

Table 5.3: Signed addition

First, we note some facts about adding and subtracting numbers both
positive and negative. We see that both the sign and the relative absolute
values of the two operands are important. For example, if x > 0 and
y < 0 and x < y then the sum s = x+ y is equal to −1 · (|y| − |x|). For
both addition and subtraction there are eight such cases which we must
handle separately. See table 5.3 and table 5.4.

The implementations of signed addition and signed subtraction are
straightforward. Looking at listing 5.11, first we determine if X ≥ Y ,
and set s accordingly (lines 8 to 14). Then combine the signs of X and
Y into a two bit value which correspond to the four cases in table 5.3.

If both X and Y are positive (line 17) then the sum is positive and
equal to X + Y so we set the sign of S, the sum to 1 and S itself to
X + Y (lines 19 and 22).

mp_limb_t
2 mp_signadd(mp_t S, mp_sign_t *sS,

mp_t X, mp_sign_t sX, mp_t Y, mp_sign_t sY)
{

mp_sign_t s;
7



102 CHAPTER 5. OTHER OPERATIONS

if (mp_gte(X, Y)) {

s = 1;

12 } else {

s = 0;
}

17 switch ((sX << 1) | sY) {

case ((MP_POS << 1) | MP_POS):

*sS = 1;
22 return mp_add(S, X, Y);

break;

case ((MP_POS << 1) | MP_NEG):

27 if (s) {

*sS = 1;
return mp_sub(S, X, Y);

32 } else {

*sS = 0;
return mp_sub(S, Y, X);

}
37 break;

case ((MP_NEG << 1) | MP_POS):

if (s) {
42

*sS = 0;
return mp_sub(S, X, Y);

} else {
47



5.6. SIGNED ADDITION AND SUBTRACTION 103

*sS = 1;
return mp_sub(S, X, Y);

}
break;

52

case ((MP_NEG << 1) | MP_NEG):

*sS = 0;
return mp_add(S, X, Y);

57 break;

default:
MP_ERR(MP_ERR_NEVER);

}
62 }

Listing 5.11: Signed addition

If X is positive but Y is negative (line 25) we need to know if X ≥ Y
or not. If X > Y then S = X −Y and S is positive (lines 29 and 30). If
X < Y then S = −(Y −X) and we set the sign of S to negative and S
to Y −X (lines 34 and 35).

If X is negative and Y is positive (line 39) then we again need to
know if X ≥ Y or not. If it is (line 41) then we set the sign of S to
negative and S to X − Y (lines 43 and 44). If not, i.e. if X < Y then
S is positive and S = X − Y (lines 48 and 49). Finally, if both X and
Y are negative (line 53) then S is also negative and we set the sign of S
accordingly, also we set S to X + Y (line 55 and 56).

Sign of X Sign of Y |X| ≥ |Y | |X| < |Y |
X > 0 Y > 0 (+1) · (X − Y ) (+1) · (Y −X)
X > 0 Y < 0 (+1) · (X + Y ) (+1) · (X + Y )
X < 0 Y > 0 (−1) · (X + Y ) (−1) · (Y +X)
X < 0 Y < 0 (−1) · (X −B) (+1) · (Y −X)

Table 5.4: Signed subtraction

Looking at listing 5.12 we see that the signed subtraction is very sim-
ilar to the signed addition except for the eight cases which are obviously
different (see table 5.4).



104 CHAPTER 5. OTHER OPERATIONS

mp_limb_t
mp_signsub(mp_t D, mp_sign_t *sD,

3 mp_t X, mp_sign_t sX, mp_t Y, mp_sign_t sY)
{

mp_sign_t s;

8 if (mp_gte(X, Y)) {

s = 1;

} else {
13

s = 0;
}

switch ((sX << 1) | sY) {
18

case ((MP_POS << 1) | MP_POS):

if (s) {

23 *sD = 1;
return mp_sub(D, X, Y);

} else {

28 *sD = 0;
return mp_sub(D, X, Y);

}
break;

33 case ((MP_POS << 1) | MP_NEG):

*sD = 1;
return mp_add(D, X, Y);
break;

38

case ((MP_NEG << 1) | MP_POS):



5.7. GREATEST COMMON DIVISOR 105

*sD = 0;
return mp_add(D, X, Y);

43 break;

case ((MP_NEG << 1) | MP_NEG):

if (s) {
48

*sD = 0;
return mp_sub(D, X, Y);

} else {
53

*sD = 1;
return mp_sub(D, X, Y);

}
break;

58

default:
MP_ERR(MP_ERR_NEVER);

}
}

Listing 5.12: Signed subtraction

Note that both mp_signadd and mp_signsub are in place safe. Thus,
for example, mp_signadd(X, sX, X, sX, Y) produces the expected re-
sult.

5.7 Greatest common divisor

The greatest common divisor, from definition 8, can be computed using
Euclid’s algorithm.

Consider the two number a > 0 and b > 0 where a > b and assume
g|a and g|b. Then a = gx and b = gy, x > 0 and y > 0. Dividing a with
b yields q and r such that a = qb+ r and r = a− qb. Now, since a = gx
and b = gy we have r = g(x− qy) and g|r. Continuing, assume h|b and
h|r, then b = hm and r = hn. Since a = qb+ r we have a = h(qm+ n)
and h|a.



106 CHAPTER 5. OTHER OPERATIONS

Thus all common factors g of a and b are common factors of b and
r. Also, all common factors of h of b and r are common factors of a
and b. That is, in particular, for the greatest common divisor we have
gcd(a, b) = gcd(b, r) where r = a − qb and r < b. In fact, gcd(a, b) is
equal to gcd(b, s) where s is any linear combination of a and b.

So, if we repeatedly compute the remainder of a and b, then of b and
r, etc, eventually the remainder will be zero and the final divisor is the
greatest common divisor of a and b. This is Euclid’s algorithm, or the
Euclidean algorithm (algorithm 5) described below.

Algorithm 5. Euclid’s algorithm .
Euclid’s algorithm computes the greatest common divisor of a and b.

In: Two positive integers a and b, a ≥ b.

Out: The greatest common divisor of a and b, gcd(a, b).

1: a1 = a
2: b1 = b
3: compute q1 and r1 in a1 = q1b1 + r1

4: i = 1
5: while ri 6= 0 do
6: i = i+ 1
7: ai = bi−1

8: bi = ri−1

9: compute qi and ri in ai = qibi + ri
10: end while
11: return ri−1

Euclid’s algorithm, in each step, generates a pair of integers which
form a sequence

(a1, b1), (a2, b2), . . . (ak, bk)

where (a1, b1) = (a, b) and (ai, bi) = (bi−1, ri−1). The integers ai and bi
are computed such that ai = biqi + ri. Now, the algorithm terminates,
because the remainder ri is always less than the divisor bi and we will
have for i = 1 . . . k that

b1 > b2 > · · · > bk

and the algorithm will eventually reach 0, i.e. bk = 0.



5.7. GREATEST COMMON DIVISOR 107

At the last iteration we will have rk = 0 and ak = qkbk, that is bk|ak
and gcd(ak, bk) = bk. We know from our discussion above that if g is a
common factor of our integers a and b it must also be a common factor
of b and r, the remainder of a when divided by b. So, since the sequence
b1, b2 . . . bk is a decreasing sequence of remainders starting with a divided
by b, we must have that bk is the greatest common divisor of a and b.

Euclid’s algorithm requires a multiple precision division in step 9.
Another algorithm, which does not require multiple precision division
is the binary gcd algorithm. The algorithm is also known as Stein’s
algorithm, after Josef Stein who first published it in 1967.

Algorithm 6. Binary gcd .
The binary gcd algorithm computes the greatest common divisor of

two positive integers.

In: Two positive integers X and Y where X > Y .

Out: The greatest common divisor of X and Y .

1: g = 1
2: while even(X) and even(Y ) do
3: X = X/2, Y = Y/2, g = 2 · g
4: end while
5: while X 6= 0 do
6: while even(X) do
7: X = X/2
8: end while
9: while even(Y ) do

10: Y = Y/2
11: end while
12: t = |X−Y |

2
13: if X ≥ Y then
14: X = t
15: else
16: Y = t
17: end if
18: end while
19: return g · Y

The binary gcd algorithm relies on three facts about the greatest
common divisor. Consider the two numbers a and b. First, if both a



108 CHAPTER 5. OTHER OPERATIONS

and b are even then we can write a = 2x and b = 2y. Thus gcd(a, b) =
gcd(2x, 2y) = 2 · gcd(x, y). Second, if a is even and b is odd then b is
not divisible by two and gcd(a, b) = gcd(a/2, b). Third, if both a and
b are odd then a − b is even and |a − b| < max(a, b) and gcd(a, b) =
gcd(|a− b|,min(a, b)). To see why, assume a > b and gcd(a, b) = g then
a = gx and b = gy. Now, a − b is a linear combination of a and b and
we know from above that gcd(a, b) = gcd(b, g(x− y)).

Looking at listing 5.13 below, we start by checking three error cases.
We require that X, Y and G be the same size and that X > Y (lines
6 to 12). Then we initialize G to one and set up temporary copies of
X and Y in TX and TY (lines 15 and 17). Then the initializations are
done and we are ready to start the computation of the greatest common
divisor of X and Y .

void
mp_gcd(mp_t G, mp_t X, mp_t Y)
{

mp_t TX, TY;
5

if (*X != *Y)
MP_ERR(MP_ERR_OPSIZE);

if (*G < *Y)
10 MP_ERR(MP_ERR_RESSIZEOPLEN);

if (mp_lt(X, Y))
MP_ERR(MP_ERR_ARG);

15 mp_one(G);

TX = mp_tmp(*X);
mp_set(TX, X);

20 TY = mp_tmp(*Y);
mp_set(TY, Y);

while(mp_even(TX) && mp_even(TY)) {

25 (void)mp_sr(TX, TX, 1);
(void)mp_sr(TY, TY, 1);



5.7. GREATEST COMMON DIVISOR 109

(void)mp_sl(G, G, 1);
}

30 while (mp_neqz(TX)) {

while (mp_even(TX)) {

(void)mp_sr(TX, TX, 1);
35 }

while (mp_even(TY)) {

(void)mp_sr(TY, TY, 1);
40 }

if (mp_gte(TX, TY)) {

mp_sub(TX, TX, TY);
45 (void)mp_sr(TX, TX, 1);

} else {

mp_sub(TY, TY, TX);
50 (void)mp_sr(TY, TY, 1);

}
}

mp_set(TX, G);
55 mp_mul(G, TX, TY);

}

Listing 5.13: Binary gcd algorithm

First, while X and Y (in TX and TY ) are both even (line 23) we
divide X by two, Y by two and multiply G by two. This corresponds
to the first fact above. We use right and left shift for the division and
multiplication by two (lines 25 to 27).

Then we enter the while loop on line 30. We iterate until X is zero.
First on line 32, if X is even, we divide X by two (line 34) and repeat
until X is odd. Then we do the same with Y (lines 37 and 39). This
corresponds to the second fact above. Finally, the third fact above, if



110 CHAPTER 5. OTHER OPERATIONS

X ≥ Y (line 42) then we set X to X−Y
2

(lines 44 and 45. If instead

Y > X (line 47) then we set Y to Y−X
2

. When X is zero we exit the
loop and return Y ·G as the greatest common divisor of X and Y .

The extended gcd algorithm computes the greatest common divisor of
two integers (X and Y ) as well as the two integers a and b that satisfies
Bézout’s identity (theorem 5) aX + bY = gcd(X,Y ).

Algorithm 7. Extended gcd .
The extended gcd algorithm computes the greatest common divisor of

two positive integers (X and Y ) and the two integers a and b satisfying
aX + bY = g.

In: Two positive integers X and Y where X > Y .

Out: The greatest common divisor of X and Y , i.e. g = gcd(X,Y ) and
integers a and b satisfying g = aX + bY .

1: if Y = 0 then
2: g = X, a = 1, b = 0
3: return (g, a, b)
4: end if
5: a2 = 1, a1 = 0, b2 = 0, b1 = 0
6: while Y > 0 do
7: compute Q and R in X = QY +R
8: X = Y , Y = R
9: a = a2 − qa1, a2 = a1, a1 = a

10: b = b2 − qb1, b2 = b1, b1 = b
11: end while
12: g = X, a = a2, b = b2
13: return (g, a, b)

Each step of the gcd algorithm computes a divisor. That is, in the
first step we divide X by Y and compute r = X − qY . The next step is
to compute the remainder when Y is divided by r. We continue iterating
until the remainder of the division is zero.

The plain gcd algorithm discards the quotients of the division per-
formed in each iteration and only records the remainders. The extended
gcd algorithm uses the quotients to compute the Bézout coefficients a
and b.

Now, since we are interested in finding the Bézout coefficients, a and
b, in each iteration we keep track of the current linear combination (di)
of X and Y . We see that ai = ai−2 − qai−1 and bi = bi−2 − qbi−1.



5.7. GREATEST COMMON DIVISOR 111

i ai bi qi di
1 1 0 X
2 0 1 Y
3 1− 0q3 0− 1q3 q3 X − q3Y
4 0− 1q4 1 + q4q3 q4 Y − q4(X − q3Y )
5 1 + q5q4 −q3− q5(1 + q4q3) q5 X − q3Y−

q5(Y − q4(X − q3Y ))

Table 5.5: Extended gcd algorithm.

We know that each remainder (divisor) can be expressed as di =
aiX + biY . Also, each di can be expressed as di = di−2 − qdi−1. The
computed values are tabulated in table 5.5. The first two rows are the
initial values, i.e. 1 ·X + 0 · Y and 0 ·X + 1 · Y . The first real iteration
(i = 3) computes r = X − q3Y and we have the values ai = 1 − 0 · q3
and bi = 0− 1 · q3. Continuing, we see that it suffices to remember the
two previous values of ai and bi to compute the current value. When
the algorithm terminates, with a remainder of zero, we will have the
desired coefficients. This is the essence of the extended gcd algorithm,
algorithm 7.

The binary extended gcd algorithm (algorithm 8) follows the same
pattern as the binary gcd algorithm presented earlier (algorithm 6) but
also computes the Bézout coefficients a and b in the same fashion as the
extended gcd algorithm (algorithm 7).

Algorithm 8. Binary extended gcd .
The binary extended gcd algorithm computes the greatest common

divisor of two positive integers (X and Y ) and the two integers a and b
satisfying aX + bY = g.

In: Two positive integers X and Y where X > Y .

Out: The greatest common divisor of X and Y , i.e. g = gcd(X,Y ) and
integers a and b satisfying g = aX + bY .

1: g = 1
2: while even(X) and even(Y ) do
3: X = X

2
, Y = Y

2
, g = 2 · g

4: end while
5: u = X, v = Y , A = 1, B = 0, C = 0, D = 1



112 CHAPTER 5. OTHER OPERATIONS

6: while even(u) do
7: u = u

2
8: if A ≡ B ≡ 0 (mod 2) then
9: A = A

2
, B = B

2
10: else
11: A = A+Y

2
, B = B−X

2
12: end if
13: end while
14: while even(v) do
15: v = v

2
16: if C ≡ D ≡ 0 (mod 2) then
17: C = C

2
, D = D

2
18: else
19: C = C+Y

2
, D = D−X

2
20: end if
21: end while
22: if u ≥ v then
23: u = u− v, A = A− C, B = B −D
24: else
25: v = v − u, C = C −A, D = D −B
26: end if
27: if u = 0 then
28: a = C, b = D
29: return (a, b, g · v)
30: else
31: goto 6
32: end if

Looking at listing 5.14, the first lines, line 9 to 29 checks for errors
and initializes the temporary variables used in the algorithm. The sizes
of X, Y and V must all be the same, which we check on lines 9 to 15.
Then we allocate space for the temporary variables G, U , C, D, T , TX
and TY (lines 18 to 24) and set TX, our temporary copy of X, and
also TY (lines 26 and 27). Next we set up the signs of all our working
variables. We consider them all to be positive at start (line 29). Finally
we initialize G to one, line 32.

We now go on to the main computation of the algorithm. The while-
loop on line 34 to line 39 divides X and Y by two and multiplies G by
two while both X and Y are even.



5.7. GREATEST COMMON DIVISOR 113

void
mp_extgcd(mp_t A, mp_sign_t *sA, mp_t B,

mp_sign_t *sB, mp_t V, mp_t X, mp_t Y)
{

5

mp_t G, U, C, D, T, TX, TY;
mp_sign_t sC, sD, sU, sV, sX, sY, sT;

if (*X != *Y)
10 MP_ERR(MP_ERR_OPSIZE);

if (*X != *V)
MP_ERR(MP_ERR_RESSIZEOPLEN);

15 if (*A != *X || *B != *X)
MP_ERR(MP_ERR_RESSIZEOPlEN);

G = mp_tmp(*X);
U = mp_tmp(*X);

20 C = mp_tmp(*X);
D = mp_tmp(*X);
T = mp_tmp(*X);
TX = mp_tmp(*X);
TY = mp_tmp(*Y);

25

mp_set(TX, X);
mp_set(TY, Y);

*sA = *sB = sC = sD =
30 sU = sV = sX = sY = MP_POS;

mp_one(G);

while (mp_even(TX) &&
35 mp_even(TY)) {

(void)mp_sr(TX, TX, 1);
(void)mp_sr(TY, TY, 1);
(void)mp_sl(G, G, 1);

40 }



114 CHAPTER 5. OTHER OPERATIONS

mp_set(U, TX);
mp_set(V, TY);
mp_one(A);

45 mp_zero(B);
mp_zero(C);
mp_one(D);

again:
50 while (mp_even(U)) {

(void)mp_sr(U, U, 1);

if ((mp_eqz(A) ||
55 mp_even(A)) &&

(mp_eqz(B) ||
mp_even(B))) {

(void)mp_sr(A, A, 1);
60 (void)mp_sr(B, B, 1);

} else {

mp_signadd(T, &sT, A,
65 *sA, TY, sY);

(void)mp_sr(A, T, 1);
*sA = sT;
mp_signsub(T, &sT, B,
*sB, TX, sX);

70 (void)mp_sr(B, T, 1);
*sB = sT;

}
}

75 while (mp_even(V)) {

(void)mp_sr(V, V, 1);

if ((mp_eqz(C) || mp_even(C)) &&
80 (mp_eqz(D) || mp_even(D))) {



5.7. GREATEST COMMON DIVISOR 115

(void)mp_sr(C, C, 1);
(void)mp_sr(D, D, 1);

85 } else {

mp_signadd(T, &sT, C,
sC, TY, sY);

(void)mp_sr(C, T, 1);
90 sC = sT;

mp_signsub(T, &sT, D,
sD, TX, sX);

(void)mp_sr(D, T, 1);
sD = sT;

95 }
}

if (mp_gte(U, V)) {

100 mp_sub(U, U, V);

mp_signsub(T, &sT, A, *sA, C, sC);
mp_set(A, T); *sA = sT;
mp_signsub(T, &sT, B, *sB, D, sD);

105 mp_set(B, T); *sB = sT;

} else {

mp_sub(V, V, U);
110

mp_signsub(T, &sT, C, sC, A, *sA);
mp_set(C, T); sC = sT;
mp_signsub(T, &sT, D, sD, B, *sB);
mp_set(D, T); sD = sT;

115 }

if (mp_eqz(U)) {

120 mp_set(A, C); *sA = sC;



116 CHAPTER 5. OTHER OPERATIONS

mp_set(B, D); *sB = sD;
mp_mul(T, G, V);
mp_set(V, T);

125 return;

} else {

goto again;
130 }

}

Listing 5.14: Extended Euclid

Next, U is set to the current value of X and V to the current value
to Y and the initial values of the coefficients A, B, C and D are set
up (lines 42 to 47). Now, A = 1, B = 0, C = 0 and D = 1 which
corresponds to X = AX +BY and Y = CX +DY i.e. X = 1 ·X + 0 ·Y
and Y = 0 ·X + 1 · Y .

Continuing, while U is even (U is initially set to the current value of
X) we divide U by two, by shifting U right one bit (line 52), then, if
A and B are even we divide both by two (again by shifting them right
one bit) on lines 59 and 60. If, on the other hand, one of A or B is
odd we instead compute, in T , the difference between A and Y (line 64)
and assign the result, divided by two, to A (line 66). Also, we compute
B = B−X

2
on lines 68 and 70.

Next, if V is even (line 75) we do a similar computation to C and D.
That is, first we divide V by two (line 77), then if C and D are both
even (line 5.14) we set C = C

2
and D = D

2
. If one or both of them are

odd we instead compute C = C−Y
2

and D = D−X
2

(lines 87 to 94).

Now, if U ≥ V (line 98) we compute U = U − V , A = A − C and
B = B−D, on lines 102 to 105. On the other hand, if U < V we instead
compute V = V − U , C = C −A and D = D −B (lines 111 to 114).

The algorithm continues until U is equal to zero. If it is (line 118)
we set A = C, B = D and V = G · V as our result and terminate. If
not, we repeat the computation by continuing at the label again (line
49) until U is zero. The values of A and B are the Bézout coefficients
in the equation AX +BY = V , where V = gcd(X,Y ).



5.8. MODULAR EXPONENTIATION 117

5.8 Modular exponentiation

Modular exponentiation is of fundamental importance to public key en-
cryption. The straightforward method of computing a modular exponent
is to compute, first Ne, and then take the modulus, Ne mod M . If N
is an NL digit number, the result of squaring N will require 2NL digits.
Then computing Ne will require eNL digits. If N is a 512 bit number
and e is a 256 bit number Ne will require more than 512 · 2255 digits.
Clearly the straightforward method is not efficient for large e.

Consider the modular multiplication a ≡ xy mod m. Assume b ≡
x mod m and c ≡ y mod m. Now, by definition 11 we have ∃i : b−x = im
and ∃j : c−y = jm. We see that the product of x and y is (b−im)(c−jm)
which we can write bc + m(bj + ci + ijm). Also, we have by the same
definition that ∃k : a − xy = km, or that xy = a − km. Let a = bc
and km = m(bj + ci+ ijm) and we have that xy mod m = (x mod m) ·
(y mod m) mod m.

This fact makes it possible to compute modular exponentiation using
repeated multiplication without using more memory than the 2 · NL
digits of N2. Instead of computing N ·N . . .N mod m we can compute

N ·N mod m ·N mod m · · ·N mod m

i.e. performing a modular multiplication e times. This alleviates the
memory problem in the straightforward solution, unfortunately, if e is
large, the number of multiplications that must be performed makes the
approach infeasible.

Let e be represented in the base 2, then e =
∑n−1
i=0 ei2

i and we have
e as e = [en−1en−2 . . . e1e0]2. Now, we can write Ne as

Ne = N
∑n−1

i=0 (ei2
i) =

n−1∏
i=0

(N2i

)ei

That is, Ne is the product of the repeated squares of N , i.e. N2, N4,
N8, etc, and N if e is odd, or 1 if e is even. So, we have Ne (mod m) as

Ne (mod m) =

n−1∏
i=0

(N2i

)ei (mod m)

or
Ne0 mod m · (N2)e1 mod m · · · (N2n−1

)en−1 mod m



118 CHAPTER 5. OTHER OPERATIONS

This will require ln(e) multiplications and divisions and require 2 · ln(N)
bits of memory to evaluate. This is a reasonably efficient method of
computing modular exponentiation.

Algorithm 9. Modular exponentiation .
The modular exponentiation algorithm computes Ne mod M .

In: Two positive integers N , M and e where e =
∑n
i=0 2iei. That is, e

is an n+ 1 bit number.

Out: The result Ne mod M

1: r = 1
2: if e = 0 then
3: return r
4: end if
5: A = N
6: if e0 = 1 then
7: r = A
8: end if
9: for i = 1 . . . n do

10: A = A2 mod M
11: if ki = 1 then
12: r = A · r mod M
13: end if
14: end for
15: return r

Looking at listing 5.15 we have an implementation of the modular
exponentiation routine. We start by initializing the result R to one (line
10) then we check if E is zero, if so we return with the result R = 1,
lines 12 and 14. We find the lengths of N and M on lines 17 and 18.
If the size of R is less than the length of M than we generate an error,
line 20. We also find the maximum length of N and M (lines 23 to
26) and create two temporary variables T and U which we use in our
computation (line 28 and 29. They must be of sufficient length to hold
N2. We set T to N (line 31) and we are done initializing so we go on
with the main computation.

void
mp_expmod(mp_t R, mp_t N, mp_t E, mp_t M)
{



5.8. MODULAR EXPONENTIATION 119

5 mp_limb_t One[2] = {1, 1};
mp_size_t L, NL, ML;
mp_size_t i, t, e;
mp_t T, U;

10 mp_one(R);

if (mp_eqz(E)) {

return;
15 }

NL = mp_len(N);
ML = mp_len(M);

20 if (*R < mp_len(M))
MP_ERR(MP_ERR_RESSIZEOPLEN);

if (ML < NL)
L = NL;

25 else
L = ML;

T = mp_tmp(2 * L);
U = mp_tmp(2 * L);

30

mp_set(T, N);

if (mp_odd(E)) {
35 mp_set(R, N);

}

t = mp_highbit(E) - 1;

40 for (i = 1; i <= t; i++) {

mp_sqr(U, T);
mp_mod(T, U, M);



120 CHAPTER 5. OTHER OPERATIONS

45 if (mp_getbit(E, i)) {

mp_mul(U, T, R);
mp_mod(R, U, M);

}
50 }

}

Listing 5.15: Binary modular exponentiation

If E is odd, i.e. if e0 = 1 then we set R to N (otherwise R remains set
to one), lines 34 and 35. We let t be the index of the highest set bit in
E, i.e. the number of significant bits in E minus one (line 38) and enter
the main loop on line 40. We iterate from the second bit to the last set
bit in E. The temporary variable T is our accumulator, it is initially set
to one or N if E is even or odd, respectively. We compute T 2 mod M
on lines 42 and 43. If bit i (the current iteration) is set (line 45) then
we compute R · T mod M in R (lines 47 and 48).

This is repeated for all significant bits in E, i.e. until we have pro-
cessed the highest set bit of E. Then we have our result in R, i.e.
R = NE mod M .

5.9 Scratch space

Normally, the computer system in use provides a dynamic memory al-
locator. For example, malloc. However, using the external memory
allocator for allocation and deallocation of temporary variables during
computation impacts performance. We can improve performance by
providing a simple and fast memory handler for temporary variables.

The scratch memory allocator is essentially a stack. It is initialized
with a memory area reserved for temporary storage. A routine that will
use the scratch area saves a mark of the first free word in the scratch
area (mp_tmp_mark) . Then it allocates temporary variables used in
computation (mp_tmp). When the routine exits it releases the temporary
memory (mp_tmp_release).

The scratch space management relies on the variable mp_scratch
which must be globally visible. It is a record that contains the start
and end of the scratch memory buffer, an element pointing to the first
unused word of the scratch buffer and a high water mark that can be



5.9. SCRATCH SPACE 121

used for debugging and tuning of temporary storage. See listing 5.16 for
the definition.

typedef struct mp_tmp_s {
mp_limb_t *b;
mp_limb_t *e;
mp_limb_t *p;

5 mp_size_t max;
} mp_tmp_t;

#define MP_TMP_SCRATCH_DECL mp_tmp_t mp_scratch
#define MP_TMP_DECL mp_mark_t mp_mark

10 #define MP_TMP_MARK mp_mark = mp_tmp_mark()
#define MP_TMP_RELEASE mp_tmp_release(mp_mark)

MP_TMP_SCRATCH_DECL;

Listing 5.16: Scratch space declarations

The MP_TMP_SCRATCH_DECL statement defines the variable mp_scratch,
which must be in global scope. Each routine that uses the scratch mem-
ory must, declare a mark variable using the MP_TMP_DECL and before
using any scratch space it must also take a mark of the beginning of the
unused area of the scratch buffer using MP_TMP_MARK. Then scratch vari-
ables may be allocated using mp_tmp. Before exiting the routine the used
portion of the scratch area must be released, using MP_TMP_RELEASE.

The mp_tmp_init routine sets up the scratch area for use. The scratch
buffer b is a previously allocated memory area with room for n digits.
Looking at listing 5.17 we set the members of the global mp_scratch
record, lines 4 to 6. We save the beginning, b, and the end, e of the
scratch buffer. Also the member p points to the first unused word of the
scratch area.

void
mp_tmp_init(mp_limb_t *b, mp_size_t n)
{

mp_scratch.b = b;
5 mp_scratch.e = b + n;

mp_scratch.p = b;
}

Listing 5.17: Scratch space initialization



122 CHAPTER 5. OTHER OPERATIONS

The routine mp_tmp_mark returns a mark of the first unused word of
the scratch area, i.e. on line 4 the member p of the mp_scratch record
is returned.

mp_mark_t
mp_tmp_mark()
{

return mp_scratch.p;
5 }

Listing 5.18: Marking scratch space

Now, the routine mp_tmp allocates an n digit multiple precision num-
ber and returns it. Note that an n digit multiple precision number
requires n + 1 memory cells (we store the size at index zero). Looking
at listing 5.19 we start by checking so that there is enough scratch space
remaining for the requested multiple precision number (line 6). If not
we generate an error (line 7).

mp_t
mp_tmp(mp_size_t n)
{

mp_limb_t *l;
5

if ((mp_scratch.p + n + 1) > mp_scratch.e) {
MP_ERR(MP_ERR_SCRATCH);

}

10 l = mp_scratch.p;
*l = n;
mp_zero(l);
mp_scratch.p += (n + 1);
if ((mp_scratch.p - mp_scratch.b) >

15 mp_scratch.max)
mp_scratch.max = mp_scratch.p -

mp_scratch.b;
return l;

}

Listing 5.19: Allocating scratch space

Then, if there is room, we set l to the current start of the unused
portion of the scratch area (line 10). This will be the first word of the



5.10. ERROR HANDLING 123

multiple precision number returned. We set the first word to n, i.e.
the number of digits in the number (line 11). We also initialize the
allocated multiple precision number to zero, line 13. Then we increase
the used portion of the scratch area with n + 1 words on line 13. We
also store a high water mark used for debugging and tuning. That is,
if the current scratch space usage is more than any previous usage we
store the current usage in the element max (lines 14 and 16). Finally we
return the allocated and initialized multiple precision number, line 18.

1 void
mp_tmp_release(mp_mark_t m)
{

mp_scratch.p = m;
}

Listing 5.20: Reclaiming scratch space

The routine mp_tmp_release reclaims the scratch space used by a
routine. A routine that allocates scratch space must release the allocated
scratch space by a call to the routine mp_tmp_release with the stored
mark before exiting to deallocate the used scratch space. Looking at
listing 5.20 we reset the element that points to the first unused byte of
the scratch space to the mark m, on line 4.

5.10 Error handling

Errors that occur during computation must be handled somehow. Com-
monly, errors are indicated through return values of routines. However,
we present an error handling mechanism based on the standard library
functions setjmp and longjmp.

The routine mp_init in section 5.11 installs an error handler. When-
ever a routine generates an error the error handler will be called. If the
user does not supply an error handler a default handler is installed.

The error handling relies on the three global variables; mp_error,
mp_handler and mp_jumpbuf. The mp_error variable stores the most
recent error, mp_handler stores a pointer to the error handler and finally,
mp_jumpbuf stores a context so that the execution can continue at the
error handler if an error is generated.

typedef void (*mp_errorhandler_f)(void);



124 CHAPTER 5. OTHER OPERATIONS

jmp_buf mp_jumpbuf;
mp_error_t mp_error;

5 mp_errorhandler_f mp_handler;

typedef enum mp_error_e {
MP_ERR_ALLOC, MP_ERR_SCRATCH, MP_ERR_RESSIZE,
MP_ERR_OPSIZE, MP_ERR_RESSIZEOPLEN,

10 MP_ERR_NEG, MP_ERR_EVENBYTE, MP_ERR_ODD,
MP_ERR_ARG, MP_ERR_INDEX, MP_ERR_DIVZ,
MP_ERR_INPLACE, MP_ERR_NOTIMPL, MP_ERR_NEVER

} mp_error_t;

15 static char *mp_errorstr[] = {
"memory allocation error",
"out of scratch space",
"size of result",
"length or size of operand(s)",

20 "size of result less than"
"length of parameter(s)",
"result will be negative",
"must be even byte",
"must be odd",

25 "argument error",
"index out of range",
"division by zero",
"not in place safe",
"not implemented",

30 "should never happen"
};

Listing 5.21: Error handling declarations

The routine mp_err in listing 5.22 generates an error and transfers
execution to the error handler. First the error is stored in mp_error, on
line 4. Then, if debug is enabled, the eror message is printed (line 5).
Finally execution is transfered to the error handler by a longjump, line
6.

void
mp_err(char *s1, mp_error_t e)
{



5.11. INITIALIZATION 125

mp_error = e;
5 MP_DBG(mp_strerror());

longjmp(mp_jumpbuf, -1);
}

Listing 5.22: Generating an error

The routine mp_strerror, in listing 5.23 returns a string with a read-
able description of the error. It uses the error code as an index into an
array of strings and returns the string at the index.

char *
mp_strerror()
{

return mp_errorstr[mp_error];
5 }

Listing 5.23: Error messages

The default error handler mp_errorhandler, in listing 5.24 simply
prints the error message and exits.

void
mp_errorhandler()
{

printf("mp: %s\n", mp_strerror());
5 exit(mp_error);

}

Listing 5.24: Default error handler

Now, since the error management relies on setjmp and longjmp it is
important that execution does not continue beyond the routine that is-
sued the setjmp. That is, an error is fatal and execution must terminate
after handling the error, i.e. the error handler must terminate execution.
If it does not the behavior is undefined.

5.11 Initialization

The mp_init routine initializes the multiple precision library before use.
It sets up the scratch space and installs the desired error handler. Also,
the mp_init routine is responsible for calling the error handler if an error
occurs. Looking at listing 5.25 we start by initializing the scratch space



126 CHAPTER 5. OTHER OPERATIONS

with the buffer b containing n digits. The buffer is provided by the caller
(line 5). Then we install the desired error handler in the global variable
mp_handler, line 6. Finally we set up the execution state so we can
receive a call from the mp_err routine, on line 7.

void
mp_init(mp_errorhandler_f hnd,

mp_limb_t *b, mp_size_t n)
{

5 mp_tmp_init(b, n);
mp_handler = hnd;
if (setjmp(mp_jumpbuf) != 0) {

mp_handler();
}

10 }

Listing 5.25: Initialization

When setjmp is called it will return zero. When a corresponding
longjmp is issued using the mp_jumpbuf state execution will once again
continue as if setjmp just returned, but with a nonzero return value.
Thus if an error has been generated execution will return to line 8 where
the error handler is called.



Chapter 6

Random numbers

“Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin. For, as has
been pointed out several times, there is no such thing as a
random number – there are only methods to produce random
numbers, and a strict arithmetic procedure of course is not
such a method.”

– John von Neumann.

6.1 Randomness

Randomness is the lack of order, purpose, pattern or definite plan. Some-
thing is random if it is without pattern, purpose and cause. Something
can be, for instance, selected randomly , i.e. without cause, plan or pat-
tern.

Say that we have a source of bits. The bits produced by our source
can be biased or unbiased as defined below (definition 21.

Definition 21. Unbiased.

Let b be a bit which takes the value 0 with probability p and
1 with probability 1 − p. The bias is ε in ε = p − 1

2
. If the

bias of b is 0 then we say that b is unbiased.

127



128 CHAPTER 6. RANDOM NUMBERS

We are primarily interested in random bits, that is a bit source that
produces unbiased bits.

Definition 22. Truly random.

A bit, b is truly random if it is unbiased and independent.

A sequence is statistically random if there are no recognizable pattern
or regularity to it. An example of a statistically random sequence is the
results of repeated dice rolls. Statistical randomness does not necessarily
imply objective unpredictability, i.e. true randomness.

We make a distinction between global randomness and local random-
ness. In general, randomness often refer to global randomness. The idea
is that over time the whole sequence is random, although it may exhibit
subsequences that does not appear random. A sequence that exhibit lo-
cal randomness appears to be random when a subsequence is examined
but may not if a larger subsequence is examined.

For example, the simple linear congruential random number genera-
tor, defined by the recurrence relation

xn+1 = (axn + c) mod m (6.1)

Where 0 < x0 < m is the seed, m > 0 is the modulus, 0 < a < m
the multiplier and 0 ≤ c < m the increment. The period of a linear
congruential random generator is at most m. It will have a full period
(m) if c and m are relatively prime, a−1 is divisible by all prime factors
of m and a− 1 is a multiple of 4 if m is a multiple of 4.

Linear congruential random number generators are not suitable for
cryptography. In [6] George Marsaglia found that the numbers generated
by a linear congruential generator fall into planes. That is, for a linear
congruential generator with the multiplier a, three consecutive integers
generated, (x1, x2, x3), fall on the lattice of points described by all linear
combinations of the three points (1, a, a2), (0,m, 0) and (0, 0,m).

By observing the output of a linear congruential generator we can
compute m, see [4]. When m is known it is not difficult to set up a
system of equations to find a and c.

Another deficiency of the linear congruential generator is that, if the
modulus m is a power of 2 then the low order bits of the generated
numbers have a far shorter period than the full period. If m = bk, where
b is the base, the n:th least significant digit repeats with at most the
period bn, n < k.



6.1. RANDOMNESS 129

However, if the modulus, multiplier and increment is carefully chosen,
the output of the resulting linear congruential generator is statistically
indistinguishable from a sequence drawn at random. In [5], Park and
Miller proposes a modulus of 231 − 1, a multiplier of 16807 and an in-
crement of zero, i.e.

xn = (16807xn−1 + 0) mod 231 − 1 (6.2)

This linear congruential generator is known as the minimal standard ,
MINSTD. It has been exhaustively tested and is well understood. Also,
it is possible to compute the MINSTD xn on a computer with a wordsize
of w = 32 by carefully rewriting the recurrence relation. We have xn =
axn−1 mod m (c is zero). Now, axn−1 mod m is

axn−1 −mb
axn−1

m
c (6.3)

Let m = aq+ r then q = bm
a
c and r = m− abm

a
c. We add and subtract

mbxn−1

q
c to equation 6.3 to get

axn−1 −mb
axn−1

m
c+mbxn−1

q
c −mbxn−1

q
c (6.4)

After rearranging equation 6.4 we get

axn−1 −mb
xn−1

q
c+m

(
bxn−1

q
c − baxn−1

m
c
)

(6.5)

We let δ(xn−1) = bxn−1

q
c − baxn−1

m
c. After substituting δ(xn−1) and

m = aq + r equation 6.5 becomes

axn−1 − (aq + r)baxn−1

m
c+mδ(xn−1) (6.6)

After rearranging equation 6.6 we get

a
(
xn−1 − qb

xn−1

q
c
)
− rbxn−1

m
c+mδ(xn−1) (6.7)

And we let γ(xn−1) = a
(
xn−1−qbxn−1

q
c
)
−rbxn−1

m
c. So from the original

equation we now have

axn−1 mod m = γ(xn−1) +mδ(xn−1) (6.8)



130 CHAPTER 6. RANDOM NUMBERS

where

γ(xn−1) = a(xn−1 mod q)− rbxn−1

q
c (6.9)

δ(xn−1) = bxn−1

q
c − baxn−1

m
c (6.10)

It can be proven that if r < q then for 1 ≤ xn−1 ≤ m− 1 the following
holds

1. δ(xn−1) is 0 or 1.

2. axn−1 mod q and rbxn−1

q
c are in 0, 1 . . .m− 1.

3. |γ(xn−1)| ≤ m− 1.

If x and y are real numbers in [0, 1] then bxc − byc is either 0 or 1, and
thus follows item 1. Item 2 is a consequence of the definition of q and
r and the assumption that r < q. Item 3 follows from item 2. So, if r
is small (r < q) then equation 6.8 can be evaluated whithout producing
intermediate results larger than m− 1.

Now, since we know that 1 ≤ xn ≤ m−1 we must have that δ(xn−1) =
0 if 1 ≤ γ(xn−1) ≤ m−1 and that δ(xn−1) = 1 if −(m−1) ≤ γ(xn−1) ≤
−1. Thus we can implement the MINSTD generator without evaluating
δ(xn−1). See algorithm 10.

Algorithm 10. MINSTD.
MINSTD computes a locally random number.

In: The modulus m, the multiplier a and the seed x0.

Out: A locally random number xn.

1: q = bm
a
c

2: r = m mod a
3: h = bxn−1

q
c

4: l = xn−1 mod q
5: t = a · l
6: u = r · h
7: if t > u then
8: xn = t− u
9: else



6.1. RANDOMNESS 131

10: xn = t− u+m
11: end if
12: return xn

mp_limb_t
mp_minstdrand()
{

5 #define MINSTD_M ((unsigned)(1 << 31) - 1)
#define MINSTD_A (16807)
#define MINSTD_Q (MINSTD_M / MINSTD_A)
#define MINSTD_R (MINSTD_M % MINSTD_A)

10 mp_limb_t l, h, t, u;

h = x0 / MINSTD_Q;
l = x0 % MINSTD_Q;
t = MINSTD_A * l;

15 u = MINSTD_R * h;

if (t > u)
x0 = t - u;

else
20 x0 = t - u + MINSTD_M;

return x0;
}

Listing 6.1: MINSTD generator

There are numerous tests for statistical randomness. The first was
published 1938 by Sir Maurice George Kendall (1907 – 1983) and Bernard
Babington Smith in the Journal of the Royal Statistical society.

Kendall and Smith described four tests. The null hypothesis of each
test is that each number in the sequence under test has an equal chance of
occuring and that patterns in the sequence are distributed equiprobably.

Frequency The frequency test counts the digits and verifies that the
digits has roughly the same frequency.

Serial The serial test counts two digits at a time (01, 02, etc) and verifies
that each two digit sequence has roughtly the same frequency.



132 CHAPTER 6. RANDOM NUMBERS

Poker The poker test counts the frequency of certain five digit se-
quences (the sequences were based on poker hands).

Gap The gap test examines the distance between zeroes in the sequence,
i.e. 00 has a distance of zero, 010 a distance of one, etc.

A sequence passing all four tests within a given degree of significance is
declared locally random.

Another definition of randomness is algorithmic randomness, or Kol-
mogorov randomness. The Kolmogorov complexity of an object is a
measure of the computational resources required to specify (describe)
the object. For example, consider the two sequences

(1, 0, 1, 0, 1, 0, 1, 0, . . . )

(1, 0, 0, 1, 1, 0, 1, 0, . . . )

The first sequence can be described “repeat 1, 0 n times”. The second
sequence is not as simple to describe, however, we can describe it using
itself, i.e. say “the sequence (1, 0, 0, 1, 1, 0, 1, 0, . . . )”. We say that the
complexity of a sequence is the length of its shortest description in some
prescribed description language.

Assume we have a description language, such as a programming lan-
guage, or a Turing machine encoding (see section 3.2 in chapter 3). If P
is a program, written in our description language, that outputs x, then
P is a description of x. The length of the description is the length of P ,
interpreted as a character string.

Alternatively, consider the encoding of a Turing machine M . The
encoding is a function that associates M with a string 〈M〉. If w is
input to M , which produces x, then 〈M〉 w is a description of x. We
define the universal Turing machine, a programmable Turing machine.

Definition 23. Universal Turing machine.

A universal Turing machine U is a Turing machine (see def-
inition 17) with a read-only input tape on which it expects
an encoding 〈M〉 of a Turing machine M . After reading the
input tape, U simulates the behaviour of M . If M halts, U
leaves only the output of M on the tape and halts.

If 〈M〉 is an encoding of M as a binary string and M(x) is the
partial function computed by M , then U(〈M〉 x) = M(x).



6.2. ENTROPY 133

We say that d(x) is a description of x. The description may be a
Turing machine encoding, i.e. d(x) = 〈M〉. A string x has at least one
encoding, the trivial encoding, which describes x as itself. We say that
d(x) is the minimal description of x if it is the description that uses the
least number of symbols.

Definition 24. Kolmogorov complexity.

Let d(x) be a minimal description of x, then

K(x) = |d(x)|

is the Kolmogorov complexity of x.

Thus, we consider the Kolmogorov complexity of a string to be the
length of the shortest Turing machine encoding of the string. A string
is algorithmically random if it is shorter than any program that can
compute the string, i.e. the string x is algorithmically random if K(x) >
|x|.

6.2 Entropy

Entropy, first introduced by Claude E. Shannon is a measure of the
average information content in a message. Before we can define entropy
we need to define the discrete probability distribution.

Definition 25. Discrete probability distribution.

A discrete probability distribution on a set S is a function
D : S → [0, 1] ⊂ R so that

∑
x∈S D(x) = 1. We write x ∈ Xn

to mean that x is chosen so that ∀z ∈ {0, 1}n P (x = z) =
Xn(z).

The distribution Un is the uniform distribution where all outcomes
are equally probable.

Definition 26. Entropy.

Let X be a discrete random variable with outcomes selected
from the set x1, x2 . . . xn. The entropy H of X is

H(X) = E(I(X))



134 CHAPTER 6. RANDOM NUMBERS

Where E(X) is the expected value of X and I(X) is the
information content, or self-information, of X. The self-
information of X is a random variable. If p is the probability
mass function of X (see definition 25 above) then the entropy
is

H(X) =

n∑
i=1

p(xi)I(xi) = −
n∑
i=1

p(xi) logb p(xi)

The base b of the logarithm is commonly set to two and we measure
information or uncertainty in bits.

Claude Elwood Shannon (1916 – 2001) was an American electronics
engineer and mathematician. He is considered the father of information
theory. Shannon was born in Petoskey, Michigan. His father was a
businessman and his mother was a language teacher. Shannon grew up
in Gaylord, Michigan, where he graduated from the Gaylord High school
in 1932. Then he enrolled at the University of Michigan from which
he graduated in 1936 and continued his studies at the Massachusetts
Institute of Technology. In his master’s thesis Shannon proved that
relays could be used to solve Boolean algebra problems. This is the
basic concept that forms the foundation for all digital computers.

Shannon went to the Cold Spring Harbor laboratory for his Ph. D.
work and presented his dissertation in 1940. Later that same year Shan-
non became a national research fellow at the Institute for Advanced
studies at Princeton. During the war Shannon worked at Bell Labs and
in 1943 he met Alan Turing who was in Washington to share the crypt-
analytic methods he developed at Bletchley park. They met daily in the
cafeteria and shared ideas.

At the end of the war Shannon prepared a classified paper for Bell
Labs, “A Mathematical Theory of Cryptosystems”, of which a declassi-
fied version were later published in 1949. In a footnote in the classified
paper Shannon stated that his intentions were to develop some of the
results in a future memorandum on the transmission of information.

The promised paper appeared in the Bell Systems Technical Journal
in 1948, this was Shannon’s landmark paper “A mathematical theory of
communication”, and the foundation of the field of Information Theory.
In 1956 Shannon returned to MIT to hold an endowed chair. Shannon
worked at MIT until 1978.

There are currently five statues of Shannon, one at the University of
Michigan, one at MIT, one in Gaylord, Michigan, one at the University of



6.2. ENTROPY 135

California, San Diego and the fifth at Bell Labs. Shannon is considered to
be one of the greatest scientists of the 20:th century, his communication
theory (now information theory) provided the foundation for the digital
revolution.

Shannon himself did not know. He was struck by Alzheimer’s disease.
His wife wrote in his obituary that “he would have been bemused”,
referring to the revolution he had started.

Consider a discrete random variable X with a set of n equally proble
outcomes, xi : i = 1 . . . n and p(xi) = 1

n
. We say that the uncertainty

of X is u = logb(n) Taking the logarithm of the number of possi-
ble outcomes means the uncertainty is additive, i.e. if we have X
as above and Y , another discrete random variable with a set of m
equiprobable outcomes, {yi : i = 1 . . .m} then we have the uncertainty
u = logb(nm) = logb(n) + logb(m).

Since the outcomes of X are equiprobable, we can instead write, for
the uncertainty of X, u = logb(

1
p(xi)

= − logb(p(xi)) for all i = 1 . . . n.

If the outcomes are not uniformly distributed we define the surprisal ,
ui = − logb(p(xi)) and the average uncertainty becomes

u =

n∑
i=1

p(xi)ui = −
n∑
i=1

p(xi) logb(p(xi))

which is our definition of entropy H(X).
Consider flipping a coin. If the probability of the coin landing heads

up is p then the entropy of a coin toss is

H(C) = −(p log2(p) + (1− p) log2(1− p))
If p = 0 then we have H(C) = 0 and if p = 1 then we also have H(C) = 0,
that is, if the outcome is known beforehand (i.e. always heads or always
tails) the the entropy is zero. We also see that the entropy is maximized
if the coin is fair, i.e. if p = 1

2
.

Consider a source of data that outputs a sequence of symbols. The
entropy rate is the number of bits per symbol that are required to encode
the data emitted from the source. Assuming the symbols emitted from
the data source are represented as b bit words then we can define the

entropy rate as J = H(X)
b

, where X is a random variable representing
our data source. More formally, the entropy rate of a stochastic process
X is defined as

H(X) = lim
n→∞

1

n
H(X1, X2 . . . Xn)



136 CHAPTER 6. RANDOM NUMBERS

The stochastic process X is a set {Xi : i ∈ S} where each Xi is a random
variable.

We also introduce the concept of minimum entropy. Minimum en-
tropy is always less than or equal to the Shannon entropy. They are
equal when the random variable measured is uniformly distributed.

Definition 27. Minimum entropy.

The minimum entropy of a random variable X with the set of
outcomes {xi : i = 1 . . . n} and the probability mass function
p(xi) is

H∞(X) =
n

min
i=1

(− logb p(xi)) = −(
n

max
i=1

logb p(xi))

= − logb
n

max
i=1

p(xi)

Minimum entropy is a measure of the worst case amount of ran-
domness in a random variable and is important in our reasoning about
random number generation.

6.3 Harvesting entropy

We know from the previous section that information is basically equiv-
alent to uncertainty. We are looking for uncertainty, or randomness.
Suppose we have a source X that outputs w bit words. The entropy
rate of the bitsource X is JX = H(X)/w. Assume JX is less than, or
even much less than w. To harvest w bits of randomness we will need
at least w

JX
w bit words from the entropy source X.

Say that we have k = w
JX

w bit words from our source of entropy X,

i.e. EX = {x1, x2 . . . xk}. We know that the set EX contain at least w
bits of entropy among its k ·w bits. Unfortunately it usually difficult to
directly extract the w good bits from the k · w − w bad bits.

First we describe two techniques to de-skew a bitsource. The first
technique is based on parity of a bitsequence, the second is due to von
Neumann and equalizes the bias by forming pairs of bits, discarding
some pairs and mapping others to the zero or one output bit.

The parity of a sequence of bits is one if the sequence contains an
odd number of bits and zero if the sequence contains an even number of
bits.



6.3. HARVESTING ENTROPY 137

Assume we have a source of bits Y , much like the coin flip in section
6.2, where the bias is e. If we draw one bit y from Y , the probability
that it is a one is P (y = 1) = 0.5+e = p, and the probability that is it a
zero is P (y = 0) = 0.5−e = q. If we draw two bits [y1y0] the probability
of the parity being one is

P (y1 = 0) · P (y0 = 1) + P (y1 = 1) · P (y0 = 0) =

pq + pq = 2(0.5 + e)(0.5− e) = 2(0.52 − 0.5e+ 0.5e− e2) =

0.5− 2e2

and the probability that the parity is zero is

P (y1 = 0) · P (y0 = 0) + P (y1 = 1) · P (y0 = 1) =

qq + pp = (0.5− e)(0.5− e) + (0.5 + e)(0.5 + e) =

0.5 + 2e2

Since e ≤ 0.5 we see that 2e2 ≤ e and we have that the parity of two
bits from our bitsource Y has less bias that the individual bits.

For a bitsequence of length n drawn from Y , i.e. the sequence
[yn−1 yn−2 . . . y1 y0] the probabilities that the parity is one or zero is
the sum of the odd or even terms of the binomial expansion of (p+ q)n.
These sums are

1

2

(
(p+ q)n + (p− q)n

)
and

1

2

(
(p+ q)n − (p− q)n

)
Since we have p = 0.5 + e and q = 0.5 − e we have p + q = 1 and
p− q = 2e, thus the expressions above becomes

1

2

(
1 + (2e)n

)
=

1

2
+ 2n−1en

and
1

2

(
1− (2e)n

)
=

1

2
− 2n−1en

Which one of the expressions above that corresponds to the parity
being one or the parity being zero depends on whether n is odd or even.



138 CHAPTER 6. RANDOM NUMBERS

In any case, we see that by using a sufficiently long sequence of bits we
can make the bias of the parity be arbitrary close to 0.5. That is, we
say, for a probability ε that

1

2
+ 2n−1en <

1

2
+ ε

which gives

n >
log2ε

log2e

so for sufficiently large n we can make the probabilities of the parity be
epsilon close to unbiased.

If we instead draw pairs of bits from our source Y , discard pairs of
zeroes or pairs of ones and interpret 01 as a 0 and 10 as a 1 the probability
of a one or a zero will be

P (01) = qp = (0.5− e)(0.5 + e) = 0.25− e2

P (10) = pq = (0.50e)(0.5− e) = 0.25− e2

The bias will be eliminated. However, we will not be able to determine
how many bits to draw from Y , since more than half of the drawn bits
will be discarded. The expected number of bits drawn from Y to produce
n bits is

2n

0.5− 2e2

This technique requires that each bit from Y has the same probability
of being 0 or 1 as any other bit in the stream, i.e. that the bias is
stationary, and also that the bits are uncorrelated.

It is also possible to use compression to de-skew a bitsource. The-
oretically an optimal compression would leave only the good bits, i.e.
the actual number of bits of information (uncertainty) in a sequence. In
practice, though, general compression algorithms produce output that
consist of more than the desired bits of uncertainty, for example pream-
bles, framing, etc.

If we do not have a source of true randomness we will have to rely on
one or, preferably, more weaker sources of entropy. A good strategy is
to gather entropy from as many sources as possible and combine them
to provide the strongest possible output. To combine, or mix , entropy
sources we need a mixing function. A mixing function is a function that



6.3. HARVESTING ENTROPY 139

combines its inputs to produce an output where each output bit is a
different, complex, non-linear function of all the input bits. A trivial
mixing function is the exclusive-or operation. We have the probabilities,

A B XOR
0 0 0
0 1 1
1 0 1
1 1 0

Table 6.1: Exclusive-or.

pA = 0.5 + eA and pB = 0.5 + eB that a source outputs a one and the
probabilities qA = 0.5 − eA and qB = 0.5 − eB that a source outputs a
zero. The probability of the result of the exclusive-or being a one is then
pX = pA · qB + qA · pB . Expanding pX we get

pX = (0.5 + eA)(0.5− eB) + (0.5− eA)(0.5 + eB)

= 0.5− 2eAeB

and we have the bias of the output of the exclusive or of two independent
inputs as 2eAeB . Since eA and eB is always less than or equal to 1/2 we
see that the bias is improved if eA or eB is less than 1/2.

Stronger mixing functions are hashing functions, such as SHA* and
MD*. From an input of arbitrary size they produce a short fixed-length
output which is a mix of all the input bits. The MD* family of hashing
functions produce a 128-bit hash, SHA-1 produce 160 bits and other SHA
hashes produce up to 512 bits of output. Further, AES and DES can
also be used to mix entropy. AES, for example, takes 384 bits of input,
128 bits of data and 256 bits of key, and produces 128 bits of output.
Each bit of output is dependent on a complex, non-linear, function of
all input bits.

Aqcuiring, or harvesting, entropy is a highly system dependent func-
tion. In some cases dedicated hardware is available to produce truly
random output. However, usually no such hardware is available and
entropy must be gathered from other sources.

Some computer systems have high resolution timers, for instance the
Intel architecture provides model specific registers that include a time
stamp counter that can be read using an assembler instruction (RDTSC)



140 CHAPTER 6. RANDOM NUMBERS

[12]. Other systems provide similar time stamp functionality or mi-
crosecond resolution timers.

Some sources of entropy are: audio or video devices, other device
activity, temperature measurements, interrupt timing, and mouse move-
ments or keystroke timings.

Many systems have inputs that digitize data from a real world analog
source, such as from a microphone or video camera. The noise from a
microphone port with no source connected or a from a video camera
with the lens cap on is essentially thermal noise. If the gain of such
an unconnected input is increased so that the noise is digitised it may
provide a reasonable source of entropy. The digitized input will need to
be de-skewed and the status of the input port must be checked so that
it is unconnected and in working order.

In [15] and [13] the authors describe a technique to harvest entropy
from disk activity. The basic idea is that air turbulence inside hard disk
drives randomly disturb the timings of successive reads of the same block
from a hard disk. Thus by processing timings of such reads it is possible
to generate entropy. It is also possible to extract entropy from timing
of network activity, for instance the delay between packets seen on an
ethernet.

Some systems have on board support to measure temperature to con-
trol the fan used for cooling. If the temperature sensor outputs a high-
precision reading the least significant bits of the difference between two
such readings may be a source of entropy. Hardware interrupts may also
provide a source of entropy by taking high resolution timing measure-
ments between a selected set of interrupts.

One of the simplest methods to implement for entropy harvesting
is timing between keystrokes. By making sure that character input is
unbuffered the timing between user keystrokes provide a simple source
of entropy.

6.4 Random number generator

A random number generator is a device that generates a sequence of
numbers (bits) that are random. Random numbers can be generated
based on the outcome of a physical process, for instance rolling a die,
measuring thermal noise, atmospheric noise, or something similar.

True randomness is hard to find. Many physical sources of random-
ness are biased. And generally, if a physical source of randomness is



6.4. RANDOM NUMBER GENERATOR 141

available, it often does not produce a sufficient number of random bits
per second.

A pseudo-random number generator is an algorithm that generate
(compute) numbers (bits) with good random properties.

We introduce yet another type of Turing machine, the probabalistic
Turing machine. The probabalistic Turing machine is a non-deterministic
Turing machine which randomly selects its transition. The difference
between the two types of Turing machines is that the non-deterministic
Turing machine presented in section 3.4 always makes the correct (best)
choice in any given situation, and the probabalistic Turing machine sim-
ply makes a choice randomly.

Definition 28. Probabalistic Turing machine .

A probabalistic Turing machine is a non-deterministic Tur-
ing machine which at each point randomly, according to some
probability distribution, chooses between its available tran-
sitions.

If the available transitions are equally probable we can implement a
probabalistic Turing machine using a deterministic Turing machine with
an extra tape of random bits (the random tape).

The indistinguishable concept defined below is the base for our defi-
nition of randomness, or pesudo-randomness. Assume we have a proba-
balistic Turing machine A that, given a string x, decides the distribution
of x. We say that, if the difference in probability that the probabalistic
Turing machine A decides between distributions Xn and Yn is less than

1
Q(n)

where Q(n) is a polynomial, then Xn and Yn are indistinguishable.

Definition 29. Polynomial time indistinguishable.

Let Xn and Yn be probability distributions on {0, 1}n. I.e.
if x ∈ Xn then x ∈ {0, 1}n and x is selected according to the
distribution Xn. {Xn} is polynomial time indistinguishable
from {Yn} if, for all probabalistic Turing machines (A) and
for all polynomials (Q), there exists an n0 such that for all
n > n0 we have

|Px∈Xn(A(x) = 1)− Px∈Yn(A(x) = 1)| < 1

Q(n)



142 CHAPTER 6. RANDOM NUMBERS

That is, for sufficiently long strings there is no probabalistic Turing
machine that can decide whether the string was sampled from Xn or Yn.

Definition 30. Pseudo random.

We say that {Xn} is pseudo random if it is polynomial time
indistinguishable from {Un}.

We can now define the pseudo random number generator as a program
(description) that, given a shorter sequence of bits, outputs a longer
sequence of bits which is pseudo-random.

Definition 31. Pseudo random generator.

A polynomial time deterministic program

G : {0, 1}k → {0, 1}l

is a pseudo random generator if

1. l > k

2. {Gl}l is pseudo random.

Gl is the distribution on {0, 1}l where g ∈ Gl is obtained by
setting g = G(x) and x is selected from Uk (x ∈ Uk).

Thus, Gl and Ul are polynomial time indistinguishable.

We call the sequence x ∈ Uk the seed . The pseudo-random gener-
ator expands the seed into the sequence {Gl}. It is possible to prove
that pseudo-random generators as defined in definition 31 exists. The
proof is not presented here, see instead [7]. For practical applications
we must select the seed in such a way that is is unpredictable, i.e. we
are interested in a seed with the highest possible entropy.

Definition 32. Next bit test.

A next bit test is a statistical test which takes a prefix of a
sequence as input and outputs a prediction of the next bit of
the sequence.

We say that a pseudo-random generator passes the next bit
test A if, for all polynomials Q there exists an integer k0 such
that for all k > k0 and n < k the following holds

Pg∈Gk (A(g1, g2 . . . gn) = gn+1) <
1

2
+

1

Q(k)



6.5. THE BLUM-BLUM-SHUB GENERATOR 143

It is possible to prove that if a pseudo-random generator G passes the
next bit tests then G passes all statistical tests, see [7].

6.5 The Blum-Blum-Shub generator

The Blum-Blum-Shub pseudo random number generator is a pseudo
random number generator that passes the next bit test. Blum-Blum-
Shub is cryptographically secure. It is computatinally intensive and is not
appropriate for general use. It relies on the intractability of the integer
factorization problem for its (provable) security. The Blum-Blum-Shub
generator is as secure as RSA encryption.

The Blum-Blum-Shub equation is

xn+1 = x2
n mod M

where M is a product of two large primes p and q. The output of the
Blum-Blum-Shub generator is the least significant bit of xn+1. The two
primes p and q must be congruent to 3 (mod 4).

Algorithm 11. Blum-Blum-Shub.
The Blum-Blum-Shub algorithm computes a cryptographically secure

random bit.

In: The seed s.

Out: A random bit zn.

1: generate p and q, each congruent to 3 (mod 4)
2: M = p · q
3: x0 = s2 (mod M)
4: xn = x2

n−1 (mod M)
5: zn = xn mod 2

The output is a sequence [z1 z2 z3 . . . ], i.e. the parity of each ele-
ment in the sequence [x1, x2, x3 . . . ] given by the equation xn = x2

n−1

(mod M).

For a thorough description of the Blum-Blum-Shub generator and
a proof of its security see Junods paper [16]. We will continue with
a presentation of its iplementation. Our implementation of the Blum-
Blum-Shub generator consists of three routines, first the initialization in



144 CHAPTER 6. RANDOM NUMBERS

mp_blum_blum_shub_init, then the seeding in mp_blum_blum_shub_seed
and finally the generator, in mp_blum_blum_shub_rand.

The initialization essentially consists of computing the modulus M ,
by finding two Blum primes, p and q and multiplying them to form M .
Looking at listing 6.2 we start by making sure the requested bitsize of
the modulus is a multiple of eight, i.e. an even byte (line 9). If not
we generate an error, line 10. Next we compute the number of digits
required to hold the requested b bits, line 13 and then we allocate two
temporary variables to hold p and q (lines 16 and 17).

The state that must be kept for the Blum-Blum-Shub generator is
held in a global variable, mp_bbs_state, a record with two elements, a
pointer to the modulus and a pointer to the current value, X0. On lines
19 and 20 we allocate space to hold the modulus and current value and
set the pointers of the state record to the allocated space.

Next, on line 22, we generate a number of small primes for use in the
mp_findprime routine. The mp_smallprimes and mp_findprime routines
are discussed in section 7.1 and section 7.4 of chapter 7 (listings 7.1 and
7.4).

On line 24 and line 28 we use mp_findprime to find the two Blum
primes p and q. By setting the parameters lb to 3 and inc to 4 we
ensure that the prime returned by mp_findprime is a Blum prime, i.e.
congruent to 3 (mod 4).

Finally we multiply p and q to form the modulus M and assign it to
our state variable mp_bbs_state.M, previously allocated. This concludes
the initialization.

It is important that the random numbers provided by the argument
function rnd are of good quality. Preferably the random number gener-
ator function provided as an argument to the mp_blum_blum_shub_init
routine is a true random number source, i.e. that rnd is a good entropy
source.

void
mp_blum_blum_shub_init(mp_size_t b, mp_rand_f rnd)
{

5 mp_t P, Q, M;
mp_size_t l;
mp_limb_t sp[MP_BBS_SMALLPRIMES];

if ((b % 8) != 0) {



6.5. THE BLUM-BLUM-SHUB GENERATOR 145

10 MP_ERR(MP_ERR_EVENBYTE);
}

l = b / (8 * sizeof (mp_limb_t)) +
(b % sizeof (mp_limb_t) ? 1 : 0);

15

P = mp_tmp(l);
Q = mp_tmp(l);

mp_bbs_state.M = mp_new(l);
20 mp_bbs_state.X0 = mp_new(l);

mp_smallprimes(sp, MP_BBS_SMALLPRIMES);

mp_findprime(P, b / 2, MP_BBS_MILLER_RABIN_T,
25 sp, MP_BBS_SMALLPRIMES, 0x80000000,

0x3, 4, rnd);

mp_findprime(Q, b / 2, MP_BBS_MILLER_RABIN_T,
sp, MP_BBS_SMALLPRIMES, 0x80000000,

30 0x3, 4, rnd);

mp_mul(mp_bbs_state.M, P, Q);
}

Listing 6.2: Blum-Blum-Shub initialization

In listing 6.3 we present the a routine that seeds the Blum-Blum-Shub
generator. We hold the global state of the Blum-Blum-Shub generator
in the record mp_bbs_state and the routine mp_blum_blum_shub_seed
simply assigns the provided seed to the member X0 of the record holding
the state. However, we first check that the seed is not equal to one (line
4). If it is then an error is generated (line 6). Finally, on line 9 we assign
the seed S to mp_bbs_state.X0 and we are done.

void
mp_blum_blum_shub_seed(mp_t S)
{

if (mp_eq(S, mp_One)) {
5

MP_ERR(MP_ERR_ARG);



146 CHAPTER 6. RANDOM NUMBERS

}

mp_set(mp_bbs_state.X0, S);
10 }

Listing 6.3: Seeding the Blum-Blum-Shub pseudo random number gen-
erator

The routine presented in listing 6.4 computes a random digit using
the Blum-Blum-Shub pseudo random number generator. It iterates the
Blum-Blum-Shub generator to output the required number of random
bits needed to fill a w-bit word.

First, on line 9 we allocate temporary space for a multiple precision
number capable of holding the current value squared, then we initialize
r to zero (line 11.

mp_limb_t
mp_blum_blum_shub_rand()
{

mp_size_t i;
5 mp_limb_t r;

mp_t R;

R = mp_tmp(2 * *(mp_bbs_state.X0));
10

r = 0;

for (i = 0; i < 8 * sizeof (mp_limb_t); i++) {

15 mp_sqr(R, mp_bbs_state.X0);
mp_mod(mp_bbs_state.X0, R,

mp_bbs_state.M);

r <<= 1;
20 r |= mp_getbit(mp_bbs_state.X0, 0);

}

return r;
}

Listing 6.4: The Blum-Blum-Shub pseudo random number generator



6.5. THE BLUM-BLUM-SHUB GENERATOR 147

Then we enter the main loop of the generator (line 15). We will
iterate w times, to produce w bits. We evaluate the Blum-Blum-Shub
equation, xn = x2

n−1 mod M , by first squaring the current value (line
15) and then computing the remainder (line 16). Now we have the new
value (xn) in our state variable mp_bbs_state.X0.

We shift r right one bit to make room for the random bit we computed
in the current iteration (line 19). Next we extract the random bit from
the state (mp_bbs_state.X0) and add it to the other random bits in R
(line 20). When all w iterations are complete we have a random digit in
r. On line 23 we return the random digit and our work is done.





Chapter 7

Finding prime numbers

7.1 Introduction

A prime number is a number that is divisible only by one and itself. A
composite number is a number which is not prime, i.e. it is composed of
prime factors (it is a product of prime factors). We know from Euclid’s
second lemma (theorem 7) that there are an infinite number of primes.
But how do we find one?

The simplest approach to finding prime numbers is to select a number,
x, and divide it with all numbers yi less than x, i.e. 1 < yi < x. If any
of the yi divides x evenly, i.e. if x = qy + r where r = 0, then x is not a
prime number. If no yi divides x evenly then x is divisible only with 1
and itself, thus x is a prime. This process we call trial division.

We can make significant improvements to our trial division algorithm.
First note that it suffices to perform trial division up to

√
x, that is

1 < yi ≤
√
x. Since, if there is a factor of x greater than

√
x then there

must also be another factor of x less than
√
x. Thus the lesser factor

will be found in the set {yi | 1 < yi ≤
√
x}.

Naive trial division is not a feasible method for finding large prime
numbers. Trial division requires O(

√
x) divisions. If x is large, say in the

order of 2512 we will have to perform, in the worst case 2256 divisions,
which is approximately 1077 divisions. On a computer that can perform
one division every nanosecond it would take approximately 140 years to
check one 512-bit prime number.

149



150 CHAPTER 7. FINDING PRIME NUMBERS

A better algorithm is the sieve of Eratosthenes. Eratosthenes of
Cyrene (c. 276 BC – c. 195 BC) was a Greek mathematician. Er-
atosthenes was born in Cyrene (today Libya). Erathostenes studied in
Alexandria. In 236 BC he was appointed to be the third librarian of the
Great Library of Alexandria.

Eratosthenes invented a system of latitude and longitude, he also
calculated the circumference of the earth as well as the earth’s axis
tilt. The Suda, an ancient Greek historical encyclopedia (10:th century),
states that he was called Beta by his contemporaries, since he supposedly
proved himself to be the second best in the world in almost any field.

The sieve of Eratosthenes is an algorithm for finding all prime num-
bers up to a specified value. It is efficient for small primes.

Algorithm 12. Sieve of Eratosthenes.

In: An upper bound n.

Out: A list of prime numbers less than or equal to n.

1. Create a list of numbers from two to n.

2. Strike out all multiples of two from the list.

3. The next number m in the list that has not been stricken is a
prime.

4. Strike out all multiples of m.

5. Repeat steps 3 and 4 until m >
√
n.

6. All numbers remaining on the list, i.e. not stricken, are prime
numbers.

The space complexity of the sieve of Eratosthenes is in O(n) If we
are looking for prime numbers in the proximity of 2512 we realize that
the memory requirements of the sieve of Eratosthenes disqualifies it, we
would need roughly 10146 1GB disks to list all the numbers from two to
2512.

Clearly neither trial division nor the sieve of Eratosthenes alone are
feasible algorithms for finding large prime numbers. We need to find
another approach. However, trial division with a small number of primes
can be used to enhance the performance of other, more subtle algorithms
to find large prime numbers.



7.1. INTRODUCTION 151

Algorithm 13 below computes the n first prime numbers by trial divi-
sion. The algorithm generates a sequence (p0, p1, . . . , pk) of prime num-
bers. To compute the prime pk+1 we start with the number pk+1 = pk+1
and test it for divisibility with any of the previously computed primes,
i.e. with all the numbers in the sequence (p0, p1, . . . , pk). If it is di-
visible by any of the pi, 0 ≤ i ≤ k then it is composite and we increase
pk+1, i.e. pk+1 = pk+1 + 1 and repeat the trial divisbility test. When we
find a number, pk+1, that is not divisible with any of the previous pi in
the sequence we conclude that pk+1 must be a prime and we add pk+1

to the sequence.
The computation is repeated until there are n prime numbers in the

sequence.

Algorithm 13. Finding small primes.

In: A positive integer, n, n > 1.

Out: A sequence (p0, p1, . . . , pn) = (2, 3, 5, . . . ) of the n first primes.

1: p0 = 2
2: for i = 1 . . . n do
3: pi = pi−1

4: repeat
5: pi = pi + 1
6: f = FALSE
7: j = 0
8: while j < i and f 6= TRUE do
9: if pj |pi then

10: f = TRUE
11: end if
12: j = j + 1
13: end while
14: until f = FALSE
15: end for

In listing 7.1 we present an implementation of algorithm 13. The
sequence is generated in the n long array pointed to by p. We start
computation with the minimal sequence, (2), i.e. we set p0 to 2 on line
10. Then we iterate lines 12 to 27 from 1 to n to compute the n−1 next
primes.



152 CHAPTER 7. FINDING PRIME NUMBERS

void
mp_smallprimes(mp_limb_t *p, mp_size_t n)
{

mp_limb_t f;
5 mp_size_t i, j;

if (n < 1)
MP_ERR(MP_ERR_ARG);

10 p[0] = 2;

for (i = 1; i < n; i++) {

p[i] = p[i - 1];
15

do {
p[i]++;
f = 0;
for (j = 0; j < i && f == 0; j++) {

20

if (0 == (p[i] % p[j])) {

f = 1;
}

25 }
} while (f);

}
}

Listing 7.1: Small primes

On line 14 we initialize pi to pi−1 and then we enter the trial division
loop on line 16. First pi is increased by one to form the first candidate
(line 17). The flag f is used to indicate if pi has any factors among the
previously generated primes and is initialized to zero on line 18. Then
we continue with the trial division, lines 19 to 27. We iterate from 0 to
i and we will exit the loop if we have found a factor (if f is nonzero, line
19.

If the remainder of pi when divided by pj , 0 ≤ j ≤ i is zero then the
current pj is a factor of pi and the current pi is not a prime (line 21



7.1. INTRODUCTION 153

and 23). If so then we exit the loop and add one to pi to form the new
candidate prime (17).

Eventually we encounter a pi that does not have a factor among the
previously generated primes and we exit the loop (line 26), now with pi
added to the sequence of primes. The process is repeated until all the n
requested primes have been generated.

The implementation in listing 7.1 is designed to find small primes,
thus it uses the native division (remainder) operator of the computer.
The maximum prime number that can be computed by the routine is
p ≤ 2w where w is the wordsize of the computer.

To test a large probable prime against a sequence of small prime
numbers we use algorithm 14 below. It takes as input an m long sequence
of prime numbers p and a number to be tested for divisibility, n. The
algorithm iteratively divides n with each of the pi, 0 ≤ i ≤ m. If any of
the pi divides n, i.e. the remainder of the division is zero, then m can
not be prime. If no pi divides n then n may be prime. We will have to
test it more thoroughly.

Algorithm 14. Trial division by m small primes.

In: A positive integer n and a list of prime numbers p = (p0, p1, . . . pm).

Out: An answer to the question whether n is divisible by any pi, 0 ≤
i ≤ m.

1: for i = 0 . . .m do
2: k = pi
3: Compute q and r in n = qpi + r
4: if r = 0 then
5: return DIVISIBLE
6: end if
7: end for
8: return NOT-DIVISIBLE

An implementation of algorithm 14 is presented in listing 7.2. The
routine takes as input a list of small primes in p and a multiple precision
number N that is to be tested for divisibility by any of the pi in the
m-element list.

mp_limb_t
2 mp_trialdivision(mp_t N, mp_limb_t *p, mp_size_t m) {



154 CHAPTER 7. FINDING PRIME NUMBERS

mp_size_t i;
mp_limb_t P[2] = { 1, 0 };
mp_t Q, R;

7

Q = mp_new(*N);
R = mp_new(*N);

for (i = 0; i < m; i++) {
12

P[1] = p[i];

mp_div(Q, R, N, P);

17 if (mp_eqz(R)) {

mp_free(Q);
mp_free(R);

22 return 0;
}

}

mp_free(Q);
27 mp_free(R);

return 1;
}

Listing 7.2: Trial division

The loop, lines 11 to 24, performs m divisions of N . On line 13 the
multiprecision number P is constructed from the small prime pi. The
trial division is performed on line 15. If the remainder R is equal to
zero (line 17) then N can not be a prime and we exit the routine. If the
remainder is not equal to zero we continue testing N against the rest of
the primes in the list p. If neither of them divides N , N passes our trial
division test and we declare N as not being divisible by any of the pi,
line 29.



7.2. PRIME NUMBER THEOREM 155

7.2 Prime number theorem

The prime number theorem was first proven in 1896 by the French
mathematician Jacques Salomon Hadamard (1865 – 1963) and the Bel-

gian mathematician Charles-Jean Étienne Gustave Nicolas, Baron de la
Vallée Poussin (1866 – 1962). They discovered the proof independently
from each other. The proof builds on complex analysis and the charac-
teristics of the Riemann zeta function.

Theorem 22. Prime number theorem.

Let π(n) be the number of primes less than or equal to n.
The limit of the quotient of π(n) and n

lnn
approaches 1 as n

approaches infinity, i.e.

lim
n→∞

π(n)
n

lnn

= 1

This is the asymptotic law of the distribution of prime num-
bers which we restate in asymptotic notation:

π(n) ∼ n

lnn

Proof. The proof of the prime number theorem is complicated and
not presented in this text.

In 1796 Adrien-Marie Legendre (1752 – 1833), a french mathemati-
cian, conjectured that π(x) is approximately x

ln(x)−B where B = 1.08....

He based his conjecture on tables of prime numbers by Anton Felkel,
an Austrian mathematician born in 1740 and Baron Jurij Bartolomej
Vega (1754 – 1802) a Slovenian mathematician. Carl Friedrich Gauss
(see section 2.5 also provided an approximation based on the logarith-
mic integral li(x) =

∫ x
0

dt
ln(t)

, that π(x) ∼ li(x). As usual when his

results was not complete and above criticism, Gauss never published his
approximation.

The Russian mathematician Pafnuty Lvovich Chebyshev (1821 – 1894)
set out to prove the asymptotic law of distribution of prime numbers.
Chebyshev proved a weaker form of the prime number theorem. That

is, he proved that, if the limit of π(x)
x/ln(x)

as x → ∞ exists then it will



156 CHAPTER 7. FINDING PRIME NUMBERS

be equal to one. Chebyshev also proved that the ratio is bounded above
and below by two constants nearly one for all x.

The most significant paper written about the distribution of prime
numbers written by Riemann and published in 1859 titled “On the num-
ber of primes less than a given magnitude”[3].

Georg Friedrich Bernhard Riemann (1826 – 1866) was a prominent
German mathematician, his main contributions were to the field of anal-
ysis and differential geometry, except for his single paper on number
theory.

Riemann was born in Breselenz, near Danneberg, in what is now
Germany. Riemann was the second of six children. Riemanns father was
a pastor, his mother died early. He was prone to nervous breakdowns
and was very shy. He was mathematically gifted as a child.

He studied the bible intensively but ofted drifted into mathematics.
He amazed his teachers with his mathematical ability. In 1846 he started
studies in philology and theology to become a priest, as his father. Later,
in the spring of the same year, his father had raised enough money to
send Riemann to the University of Göttingen, to study mathematics,
abandoning the plans to become a priest. At the University of Göttingen
he met Carl Friedrich Gauss and attended his lectures. Next year, in
1847, he moved to Berlin to attend lectures by Jacobi, Dirichlet, Steiner
and Eisenstein. After two years he returned to Göttingen, in 1849.

Riemann held his first lectures in 1854. By founding the field of Rie-
mannian geometry he enabled Einstein’s to develop his general relativity
theory. In 1857 an attempt was made to promote Riemann to extraor-
dinary professor at the University of Göttingen. The attempt failed but
Riemann was finally granted a regular salary. After Dirichlet’s death in
1859 Riemann was promoted to head of the mathematics departement
at Göttingen. He married in 1862, to Elise Koch who later gave birth
to a daughter. Riemann died of tuberculosis in 1862 during a journey
to Italy. He was buried in the cemetary in Biganzolo, Verbania.

In his paper, possibly the single most important paper on the distri-
bution of prime numbers, Riemann introduced revolutionary ideas. The
most important one was that the distribution of the prime numbers seem
to be connected to the location of the zeroes of the analytically extended
Riemann zeta function of a complex variable.

ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ . . .



7.3. PROBABALISTIC PRIMALITY TESTS 157

Riemann introduced complex analysis to the study of π(x). Hadamard
and de la Vallée Poussin extended Riemanns ideas and successfully proved
the prime number theorem in 1896. Later, during the 20:th century, sev-
eral other proofs were found, among them the elementary proofs of Atle
Selberg and Paul Erdös in 1949.

The prime number theorem roughly describes how the prime num-
bers are distributed. An implication of the prime number theorem is
that if we select a large number n, then the probability that n is prime
is approximately 1/ln(n). Stated differently, the average distance be-
tween prime numbers in the neighborhood of n is approximately ln(n).
Another implication is that the n:th prime number, pn is approximately
nln(n). The approximation becomes better (the error smaller) when n
approaches infinity.

Now, we are interested in finding prime numbers in the proximity of
2512. The prime number theorem gives that around 2512 approximately
one in 355 (i.e. ln(2512)) numbers are prime numbers. If we have an
algorithm that can check (or verify) if a number is prime we could start
with a random number n around 2512 and sequentially check n, n + 1,
n+ 2 and so on. We would have to check, on average, 178 candidates.

7.3 Probabalistic primality tests

Let n be an odd positive integer. The set W (n) ⊂ Zn is defined by

1. For an a ∈ Zn it is possible to check in deterministic polynomial
time whether a ∈W (n).

2. If n is prime W (n) = ∅.

3. If n is composite |W (n)| ≥ n
2

.

If n is composite the elements of W (n) are called witnesses to the com-
positenes of n and the elements of L(n) = Zn −W (n) are called liars.

We want to test the number n. We select an a, a ∈ Zn at random
and we check if a ∈W (n). If a ∈W (n) then n is composite, if a 6∈W (n)
then n may be prime. An integer n that is believed to be prime based
on a probabalistic primality test is a probable prime.

Theorem 23. Square roots of unity.



158 CHAPTER 7. FINDING PRIME NUMBERS

Let p be a prime number. For x ∈ Zn and x 6≡ 1 (mod p)
and x 6≡ −1 (mod p) we have

x2 6≡ 0 (mod p)

That is there are no nontrivial square roots of 1 (mod p).

Proof. Assume the contrary, that x is a nontrivial square root of 1
(mod p), i.e. that x 6≡ ±1 (mod p). Then we have

x2 ≡ 1 (mod p)

(x− 1)(x+ 1) ≡ 0 (mod p)

Now, x is a nontrivial square root so x is not ±1 (mod p). Further, both
x− 1 and x+ 1 must be coprime to p (p is a prime). Thus neither x− 1
nor x+ 1 divides p. Since, by Euclid’s lemma, theorem 6, we know that
if a prime does not divide either of two factors then it can not divide the
product of the two factors. We have a contradiction. We conclude that

(x− 1)(x+ 1) 6≡ 0 (mod p)

and x can not be nontrivial.

Now, we have Fermat’s little theorem, theorem 15, which states that

ap−1 ≡ 1 (mod p)

if p is prime and p is coprime to a.
So, let n be an odd prime, then n−1 is even and we can rewrite n−1

as 2sr, where s, r ∈ Z and r is odd. For each a in Zn we have that either

ar ≡ 1 (mod n) (7.1)

or
(ar)2t

≡ −1 (mod n), for some t, 0 ≤ t ≤ s− 1 (7.2)

by theorem 23 above (substituting ar for x).
If we choose an integer a ∈ Zn and compute the sequence

ar mod n, (ar)2 mod n, (ar)22

mod n, . . . , (ar)2s

mod n



7.3. PROBABALISTIC PRIMALITY TESTS 159

we have, by Fermat’s little theorem, that the sequence must end with 1
or else n is not a prime.

Assuming n is a prime, if we start with an−1 = a2sr and repeatedly
take the square root of an−1, i.e. our sequence above, then the result
should be either 1 or −1. If we have −1 then equation 7.2 holds. If we
exhaust every power of two without satisfying equation 7.2 then the first
equation (equation 7.1) must hold.

Thus, we must have that the elements of the sequence must be either
1 or −1 if n is prime. If any of the elements of the sequence is not equal
to ±1 then n is not a prime, and n is composite. We say that a is a
witness to the compositeness of n.

Miller-Rabin primality test

The Miller-Rabin primality test is based on the reasoning above. I.e. if
we can find an a (a base) such that

ar 6≡ 1 (mod n)

and
a2tr 6≡ −1 (mod n) ∀t, 0 ≤ t ≤ s− 1

then a is a witness to n being composite. If not then n is a probable
prime.

Note that the test only conclusively answers if n is composite. For
some inputs the test will erroneously declare n as not being composite.
In fact it can be shown that for any odd integer n the Miller-Rabin test
will fail with a probability less than 1

4
.

If we test n once, then the probability of the composite n being de-
clared a prime is less than 1

4
. If we repeat the test with a different a the

probability of n being composite even though the test, twice, declared
n to be prime is ( 1

4
)2 = 1

16
. Thus by rerunning the test t times we can

establish with arbitrary probability that n is prime, i.e. we have n being
a prime with the probability 1− ( 1

4
)t.

Summarizing the reasoning above, we have the he Miller-Rabin prob-
abalistic primality test algorithm as below in algorithm 15.

Algorithm 15. Miller-Rabin probabalistic primality test.

In: An odd integer n ≥ 3 and a parameter t ≥ 1.



160 CHAPTER 7. FINDING PRIME NUMBERS

Out: An answer “COMPOSITE” or “PRIME”.

1: Write n− 1 = 2sr such that r is odd.
2: for i = 1 . . . t do
3: Choose a random integer a, 2 ≤ a ≤ n− 2.
4: y = ar mod n.
5: if y 6= 1 and y 6= n− 1 then
6: j = 1
7: while j ≤ s− 1 and y 6= n− 1 do
8: y = y2 mod n
9: if y = 1 then

10: return COMPOSITE
11: end if
12: j = j + 1
13: end while
14: if y 6= n− 1 then
15: return COMPOSITE
16: end if
17: end if
18: end for
19: return PRIME

In listing 7.3 we present an implementation of the Miller-Rabin prob-
abalistic primality test. In lines 9 to 25 we initialize and set up for the
main computation in lines 27 to 67.

First, on line 9 we check so that the number to be tested for primality,
P , is odd. If not we generate an error. On lines 12 to 18 we allocate
space for working variables. The size of our working variables is twice
the size of P to make room for N2 which we need to compute as part of
the algorithm (on line 51). On line 20 and 21 we initialize N to P and
find the length of P in NL. On lines 23 to 25 we set R and N1 to N − 1.
N1 will be used later in comparisons as part of the test.

Now we compute R and s in N−1 = 2sR, lines 27 to 31. R is already
set to N − 1 so we set s to zero. Then we shift R right, i.e. we divide
R by two as long as R is even. When the do-while loop has terminated
we will have s and R in N − 1 = 2sR.

mp_limb_t
mp_miller_rabin(mp_t P, mp_size_t t, mp_rand_f rnd)
{

mp_t N, N_1, R, A, Y, T, U;



7.3. PROBABALISTIC PRIMALITY TESTS 161

5 mp_size_t NL;
mp_limb_t s;
mp_limb_t i, j;

if (mp_even(P))
10 MP_ERR(MP_ERR_ODD);

N = mp_new(2 * *P);
N_1 = mp_new(*N);
R = mp_new(*N);

15 A = mp_new(*N);
Y = mp_new(*N);
T = mp_new(*N);
U = mp_new(*N);

20 mp_set(N, P);
NL = mp_len(N);

mp_set(R, N);
mp_sub(R, R, mp_One);

25 mp_set(N_1, N);

s = 0;
do {

s++;
30 (void)mp_sr(R, R, 1);

} while (mp_even(R));

for (i = 1; i <= t; i++) {

35 do {
mp_rand(A, NL * 8 * sizeof (mp_limb_t),

rnd);
} while (!mp_gt(A, mp_One) || !mp_lt(A, N_1));

40 mp_set(T, A);
mp_set(U, R);
mp_expmod(Y, T, U, N);

if (mp_eq(Y, mp_One) || mp_eq(Y, N_1)) {



162 CHAPTER 7. FINDING PRIME NUMBERS

45

continue;
}

for (j = 1; j <= s - 1; j++) {
50

mp_sqr(U, Y);
mp_mod(T, U, N);
mp_set(Y, T);

55 if (mp_eq(Y, mp_One)) {

r = 0; /* composite */
goto exit;

}
60

if (mp_eq(Y, N_1)) {

break;
}

65 }

if (mp_neq(Y, N_1)) {

r = 0; /* composite */
70 goto exit;

}

}

75 r = 1; /* probable prime */

exit:
mp_free(N);
mp_free(R);

80 mp_free(A);
mp_free(Y);
mp_free(N_1);
mp_free(T);
mp_free(U);



7.4. GENERATING LARGE PRIME NUMBERS 163

85

return r;
}

Listing 7.3: Miller-Rabin probabalistic primality test

We continue with the main part of the test. We repeat the test t
times, line 33. First we randomly select A so that 1 < A < N − 1, lines
35 to 38. Then we compute Y = AR mod N , lines 40 to 42. If Y is equal
to one or equal to N − 1 then we have that AR ≡ 1 (mod N) and by
equation 7.1 P may be prime so we continue with the next A (line 46).
If Y is not equal to one and not equal to N − 1 we continue checking
the other case, i.e. equation 7.2.

We generate each square in the sequence (AR)2j

mod N where 1 ≤
j ≤ s−1 in the for-loop on lines 49 to 65. On lines 51 to 53 we compute
Y = Y 2 mod N . On line 55 we test if Y = 1 (mod N), if so then P
is not a prime and we will return composite, else we increase j and try
again.

If, at the end of any iteration, we find that Y is not equal to N − 1
(line 67), i.e. if Y 6≡ −1 (mod N), then P can not be a prime and N fails
the test. We exit the routine indicating that N is a composite number
(lines 69 and 70).

If we do not encounter any evidence for P being composite then P
may be prime and we return prime, line 75.

In both cases, we clean up our allocated working variables, lines 78
to 84 and return a value indicating the result for N on line 86.

7.4 Generating large prime numbers

The Miller-Rabin probabalistic primality test gives us a method to test if
a given number is prime. That is the Miller-Rabin algorithm only allows
us to answer the question “Is the number n prime?”. Prime number
testing differs from prime number generation.

We know from the Prime number theorem, theorem 22, that around
the number x, the probability of a nearby number being prime is ap-
proximately 1/ln(x). As we discussed at the end of section 7.2, around
2512 approximately one number in 355 is prime. This fact, together with
the Miller-Rabin algorithm form the basis of our strategy for generation
of large prime numbers.



164 CHAPTER 7. FINDING PRIME NUMBERS

If we are interested in a prime in the region of 2s we select an s bit
random number, n, making sure that n is odd and that the s:th bit is
set (so that indeed it is in the region of 2s). We then execute the Miller-
Rabin test on the number n t times. If it passes then we know that n is
prime with a probability of 1− ( 1

4
)t.

We can improve the performance of our method by being more se-
lective with our candidate, the number n. By performing trial division
(algorithm 14) on n with a number of small primes we improve the qual-
ity of our prime candidates and thus the efficiency of our large prime
number generation.

An implementation of large prime number generation, that uses trial
division and the Miller-Rabin probabalistic primality test is presented
in listing 7.4.

The routine generates a prime number N based on the following in-
put; b is the desired bitwidth of N , t is the Miller-Rabin parameter, p is
a list of small primes that is n long. The parameter h determines how
many of the most significant bits should be set in N .

First we determine how many words N need to be to accomodate the
desired b bits. That is, we compute l, the number of words required for
b bits and compare it to the size of N , on lines 12 to 17. If N is not
sufficiently large we generate an error. We also set up our increment in
the multiple precision number I on line 20 and initialize the success flag
f (line 22) to zero.

void
mp_findprime(mp_t N, mp_size_t b, mp_size_t t,

mp_limb_t *p, mp_size_t n,
mp_limb_t hb, mp_limb_t lb,

5 mp_limb_t inc, mp_rand_f rnd) {

mp_size_t l;
mp_size_t i, c;
mp_limb_t I[2] = {1, 0};

10 mp_limb_t f;

if ((b % 8 * 2) != 0)
MP_ERR(MP_ERR_EVENBYTE);

15 l = b / (8 * w);



7.4. GENERATING LARGE PRIME NUMBERS 165

if (*N < l)
MP_ERR(MP_ERR_RESSIZE);

20 I[1] = inc;

f = 0;

mp_rand(N, b, rnd);
25

do {

N[*N + 1 - l] |= hb;
N[*N] |= lb;

30

f = mp_trialdivision(N, p, n);
if (f) {

f = mp_miller_rabin(N, t);
}

35

if (f) {
return;

} else {
if (inc == 0) {

40 mp_rand(N, b, rnd);
} else {

mp_add(N, N, I);
}

45 } while (1);
}

Listing 7.4: Find prime number

We start the main computation on line 24 by generating a first candi-
date, mp_rand generates a b bit random number using the pseudo random
number generator specified by the function pointer rnd. We enter the
main loop on line 26. We will iterate until we have found a probable
prime, that passes both the trial division test and the Miller-Rabin test
(lines 26 to 45).

The random number generated on line 24 will be a number between
0 and 2b − 1. We start by shaping it according to the patterns specified



166 CHAPTER 7. FINDING PRIME NUMBERS

in hb and lb. That is, we set the highest bits to the bitwise OR of the
highest digit and hb and we also set the lowest bits to the bitwise OR of
the lowest digit and lb, lines 28 and 29. Now we have the prime number
candidate in N .

On line 31 we use the trial division test to make sure N is not di-
visible by any of the small primes in the n long list p. If it is, then
mp_trialdivision will return 0 and some pi in p is a factor of N and
f will be set to zero. If not, i.e. if no pi in p is a factor of N then f is
set to one. Next, if f is set and N is not divisible by any of the small
primes in p then we execute the Miller-Rabin test, on line 33. Again, f
is set to one if N passes the Miller-Rabin test, if not f is set to zero.

The process is repeated until f is set, i.e. while N fails both the trial
division test and the Miller-Rabin test. If it passes both, then N is a
probable prime and we are done. We detect this on line 36 and return
with N as our industrial strength prime.

If our candidate failed both tests then we generate a new candidate.
If the increment is set to zero, i.e. inc = 0 then a new candidate is
randomly generated, line 40, if not we add the increment to our current
candidate to form the new candidate, line 42



Chapter 8

RSA

“It has a surprising amount of vigor.”

– R. Rivest

8.1 RSA

RSA, named after its inventors, Ronald Rivest, Adi Shamir and Leonard
Adleman, was discovered in 1977.

In 1976, Whitfield Diffie and Martin Hellman published their land-
mark paper, “New Directions in Cryptography”[17]. They proposed a
new method for key exchange that would revolutionize secure commu-
nication in a world where networks and telecommunication were to be
abundantly available. They had found a mechanism to exchange keys
where all required information were publicly available, yet the exchanged
key were known only to the exchanging parties. The method works only
for key exchange, not for actual encryption. In the paper Diffie and
Hellman presented the sketch for a public key cryptosystem but left for
their colleagues to find the easily computed but difficult to invert trap
door function.

In the fall of 1976 the three friends, Ronald, Adi and Leonard, af-
ter reading the Diffie-Hellman paper, set out to find an algorithm that
satisfied the specification.

Rivest had joined the MIT computer science departement in 1974,
Adleman and Shamir joined the MIT mathematics departement in 1975.

167



168 CHAPTER 8. RSA

Rivest and Shamir were interested in cryptography while Adleman was a
number theorist. The three of them had a common interest in computa-
tional complexity. One day in November Adleman dropped by Rivest’s
office. Rivest was reading the Diffie-Hellman paper and enthusiastically
explained the key ideas to Adleman. Adleman, being a number theorist,
was not impressed. However, both Shamir and Rivest were interested.

The three of them had offices nearby each other. Rivest and Shamir
came up with scheme after scheme that they presented to Adleman,
who, often after only a few minutes of thinking, would find fatal flaws.
One night, around midnight, Rivest called Adleman with a new idea.
Adleman immediately realized that it was a good idea. He responded:
“Congratulations, Ron, that should work”. And it did.

Find two prime numbers p and q and multiply them, n = pq.
Find a number e < (p − 1)(q − 1) and relatively prime to
(p− 1)(q − 1), calculate the multiplicative inverse d modulo
(p − 1)(q − 1) of e. The public key is (n, e) and the private
key is (n, d).

To encrypt a message m calculate the ciphertext c = me

(mod n). To decrypt the ciphertext c calculate m = cd

(mod n).

Rivest wrote up a paper. When Adleman got it he saw that the
authors were listed in the usual alphabetical order. He protested. Adle-
man thought he had not done enough even to be listed as an author.
Rivest disagreed. Adleman agreed to be listed last, he thought the pa-
per would be the least interesting paper he would ever write and that it
would appear in an obscure journal, read by none. He was wrong.

The RSA cryptosystem is deceptively simple. RSA is secure because
it is difficult to factor large numbers. The public key is (e, n). If we
could somehow compute d we could decrypt any intercepted message
encrypted with the key (e, n). Since d is the multiplicative inverse of e
modulo Φ(n), we can easily compute d if we know Φ(n).

Now, Φ(n) = (p− 1)(q− 1), so we need to find p and q. We know, by
construction of the cryptosystem, that n = pq. If we can factor n into it’s
two prime factors we can compute Φ(n) and e’s multiplicative inverse.
It turns out that factoring n is difficult if p and q are large. Factoring
is difficult in the sense that factoring large numbers is computationally
intensive, i.e. it takes a long time.



8.1. RSA 169

The best published algorithm is currently the general number field
sieve (GNFS). It has an asymptotic running time of

O
(
ec(logn)

1
3 (log logn)

2
3 )

where c is
(

64
9

) 1
3 [20].

Definition 33. RSA public and private key.

Find two prime numbers, p and q. Multiply them to form
the modulus, n = pq. Select a number e < Φ(n) and rela-
tively prime to Φ(n), i.e. gcd(e,Φ(n)) = 1. Calculate d, the
multiplicative inverse of e modulo Φ(n). The public key is
(n, e). The private key is (n, d).

Definition 34. RSA encryption.

To encrypt a message m, where 0 ≤ m < n, compute c, the
ciphertext, in

c = me (mod n) (8.1)

where e and n are the public key.

Definition 35. RSA decryption.

To decrypt a ciphertext c, compute m, the message, in

m = cd (mod n) (8.2)

where d and n are the private key.

We wish to show that encryption and decryption gives the intended
result. We have encryption as c = me (mod n) (equation 8.1) and de-
cryption as m = cd (mod n) (equation 8.2). Combining equation 8.1
and equation 8.2 gives

m = cd = (me)d = med (mod n)

We will show that equation 8.3 holds for all m, 0 ≤ m < n.

m = med (mod n) (8.3)



170 CHAPTER 8. RSA

We have, by definition 33, that n = pq, where p and q are both prime.
We also have that gcd(e,Φ(n)) = 1 and d is computed so that it is the
multiplicative inverse of e mod Φ(n). So we have

ed ≡ 1 (mod Φ(n))

So, by definition 11 we have that there exists a k such that

ed− 1 = kΦ(n)

and
Φ(n)|ed− 1

We also know that, by theorem 18, if p and q are relatively prime, then

Φ(n) = Φ(pq) = Φ(p)Φ(q)

Thus we can write
Φ(p)Φ(q)|ed− 1

also, since if mn|a then m|a and n|a (theorem 2, property 5) we can
write

Φ(p)|ed− 1

Φ(q)|ed− 1

By definition 7 we know that if Φ(p)|ed− 1 then there exists an integer
k such that

ed− 1 = kΦ(p)

and by theorem 16 we have that

ed− 1 = k(p− 1)

So, now consider the integer m, 0 ≤ m < n, in

med (mod p)

we have

med = med−1+1 = m ·med−1 = m ·mk(p−1) (mod p) (8.4)



8.1. RSA 171

Now, since p is prime, m is either relatively prime to p or a multiple of
p, i.e. either gcd(m, p) = 1 or gcd(m, p) = p. First, if gcd(m, p) = 1 we
have, by Fermat’s little theorem (theorem 15), that

mp−1 ≡ 1 (mod p)

and since we know, by theorem 10, property 3, that if a ≡ b (mod p)
then ak ≡ bk (mod p), we can say that

mk(p−1) ≡ 1k (mod p) (8.5)

Combining equation 8.4 and equation 8.5 we get

med = m ·mk(p−1) = m (mod n)

Thus, we have, if gcd(m, p) = 1 that

med ≡ m (mod p)

Second, if gcd(m, p) = p, i.e. m is a multiple of p, we know that if p|m
then p|mk (theorem 2, property 5) and we have

med ≡ 0 (mod p)

and also since m ≡ 0 (mod p) we have that

med ≡ m (mod p)

Thus we see that, for all m, the desired equation holds, i.e.

med ≡ m (mod p)

and by the same reasoning, the same holds for med ≡ m (mod q).
Since p and q are relatively prime we have by theorem 13 that

med ≡ m (mod pq)

and by symmetry (theorem 11, property 2) that

m ≡ med (mod n)

Since we require m to be less than n, i.e. 0 ≤ m > n there is only one
integer that satisfies m ≡ med (mod n).



172 CHAPTER 8. RSA

8.2 RSA Implementation

Key generation for the RSA cryptosystem is straightforward. We gen-
erate two primes p and q such that the two highest bits are set. We
say that a b bit number is a number greater than 2b−1, i.e. a number
where the b:th bit is set. The product of two b

2
-bit numbers with only

the highest bits set is

2
b
2
−1 · 2

b
2
−1 = 2b−2

which is not enough, so to form n we must multiply two b
2
-bit primes

with (at least) their two highest bits set. Then we get n as

n ≥ (2
b
2
−1 + 2

b
2
−2)2 = 2b−2 + 2 · 2b−3 + 2b−4 = 2b−1 + 2b−4

So, to form a b bit number, n, from two prime factors, p and q, the

factors must be greater than 2
b
2 + 2

b
2
−1, i.e. their two highest bits must

be set.
We multiply the factors p and q to form n. Then we compute (p− 1)

and (q−1) and their product, to form Φ(n) which we use to compute the
multiplicative inverse, d, of e by using the extended Euclidean algorithm.
Then we return n, e and d as the two pairs (n, e) and (n, d), the public
and private key respectively.

Looking at listing 8.1, an implementation of the RSA key generation
algorithm, we start by checking for errors in the input. The number of
bits requested must be even, they must be a multiple of eight (an octet)
and they must be at least 64 (lines 12 to 25).

We then, on line 28 compute the number of digits required to hold
a multiple precision number with the requested number of bits. Then
we allocate the results, that will be returned, in N , M and D, also we
allocate the temporary variables used in the computation.

We need a set of small primes for the mp_findprime routine, we
allocate space for them on lines 44 to 47. If the memory allocation
failed, we generate an error (lines 47 to 49). Then we use trial divi-
sion (mp_smallprimes) to generate the required number of primes in sp.
Now, we are ready to generate the two primes p and q. We use trial
division and the Miller-Rabin test, implemented in mp_findprime (lines
54 and 58). We now have everything we need to compute the keys.

void
rsa_keygen(rsa_keypair_t *k, mp_t E,



8.2. RSA IMPLEMENTATION 173

unsigned int bits, mp_rand_f rnd)
{

5 mp_size_t b;
mp_limb_t *sp;

mp_t P, Q, D, N, M, Phi;
mp_t X, Y, A, B, V;

10 mp_sign_t sA, sB, sD;

if (bits & 0x1) {

MP_ERR(MP_ERR_ARG);
15 }

if (bits < 64) {

MP_ERR(MP_ERR_ARG);
20

}

if (bits % 8) {

25 MP_ERR(MP_ERR_EVENBYTE);
}

b = ((bits / 2) + (8 * (sizeof (mp_limb_t) - 1))) /
(8 * sizeof (mp_limb_t));

30

N = mp_new(2 * b);
D = mp_new(2 * b);
M = mp_new(2 * b);

35 P = mp_tmp(2 * b);
Q = mp_tmp(2 * b);
Phi = mp_tmp(2 * b);
A = mp_tmp(2 * b + 1);
B = mp_tmp(2 * b + 1);

40 V = mp_tmp(2 * b + 1);
X = mp_tmp(2 * b + 1);
Y = mp_tmp(2 * b + 1);



174 CHAPTER 8. RSA

sp = (mp_limb_t *)malloc(RSA_SMALLPRIMES *
45 sizeof (mp_limb_t));

if (sp == 0) {

MP_ERR(MP_ERR_ALLOC);
50 }

mp_smallprimes(sp, RSA_SMALLPRIMES);

mp_findprime(P, bits / 2, RSA_MILLER_RABIN_T,
55 sp, RSA_SMALLPRIMES, 0xc0000000, 0x1,

2, rnd);

mp_findprime(Q, bits / 2, RSA_MILLER_RABIN_T,
sp, RSA_SMALLPRIMES, 0xc0000000, 0x1,

60 2, rnd);

mp_mul(N, P, Q);
mp_set(M, N);

65 mp_sub(P, P, mp_One);
mp_sub(Q, Q, mp_One);
mp_mul(Phi, P, Q);

70 mp_zero(A); sA = MP_POS;
mp_zero(B); sB = MP_POS;
mp_zero(V);
mp_set(X, Phi);
mp_set(Y, E);

75

mp_extgcd(A, &sA, B, &sB, V, X, Y);

if (mp_neq(V, mp_One)) {

80 MP_ERR(MP_ERR_ARG);
}



8.2. RSA IMPLEMENTATION 175

if (sB == MP_NEG) {
mp_set(X, Phi);

85 mp_signadd(D, &sD, B, sB, X, MP_POS);
} else {

mp_set(D, B);
}

90 k->k_prv.N = N;
k->k_prv.D = D;
k->k_pub.N = M;
k->k_pub.E = mp_new(*E);
mp_set(k->k_pub.E, E);

95 }

Listing 8.1: RSA key generation

First we compute n, as n = p · q on line 62. We also make a copy of
n in m (line 63). Then we compute (p− 1) and (q − 1) on lines 65 and
66. We multiply them to form Φ on line 67.

On lines 70 to 74 we set up the arguments to the extended Euclidean
algorithm, which we execute on line 76. The routine mp_extgcd will
return the greatest common divisor of Φ and e, in v as well as the Bézout
coefficients a and b in ax+ by = v. The coefficient b is the multiplicative
inverse to e modulo Φ.

The greatest common divisor of e and Φ must be one, so we check v
on line 78. If it is not equal to one we generate an error (line 80). Now,
if the Bézout coefficient b is negative we add Φ to b to find the positive
d (lines 83 to 87). If b is positive, we just set it to d.

Finally we set up the data of the record used to return the public and
private key on lines 86 to 94.

Encryption consists of computing c = me (mod n). Looking at listing
8.2 we start by checking the input for errors, first, if the size available
for the encrypted data is less than the length of the modulus, n, then
later decryption will fail so we generate an error (lines 8 to 10). Next,
we check so that the message m is less than the modulus n. If not
we generate an error since the cryptosystem will fail (lines 13 to 15).
Finally, on line 18, the ciphertext, in c, is computed as c = me (mod n).

void
rsa_encrypt(mp_t C, mp_t M, rsa_pubkey_t *k_pub)
{



176 CHAPTER 8. RSA

mp_limb_t NL;
5

NL = mp_len(k_pub->N);

if (*C < NL) {

10 MP_ERR(MP_ERR_RESSIZEOPLEN);
}

if (mp_gt(M, k_pub->N)) {

15 MP_ERR(MP_ERR_OPSIZE);
}

mp_expmod(C, M, k_pub->E, k_pub->N);
}

Listing 8.2: RSA encryption

Decryption is very similar to encryption. Looking at listing 8.3, first
we check for errors. That is, the size available for the decrypted message
must be big enough to hold a message of size NL, the length of the
modulus (lines 9 to 11). Then we check so that c is not greater than n,
if it is then the cryptosystem will fail (lines 14 to 16). Finally we are
ready to decrypt c into the message m, on line 19 we compute m = cd

(mod n).

1 void
rsa_decrypt(mp_t M, mp_t C, rsa_prvkey_t *k_prv)
{

mp_limb_t NL;
6

NL = mp_len(k_prv->N);

if (*M < NL) {

11 MP_ERR(MP_ERR_RESSIZEOPLEN);
}

if (mp_gt(C, k_prv->N)) {



8.2. RSA IMPLEMENTATION 177

16 MP_ERR(MP_ERR_OPSIZE);
}

mp_expmod(M, C, k_prv->D, k_prv->N);
}

Listing 8.3: RSA decryption

The two routines rsa_oi and rsa_io convert a string of octets to a
multiple precision integer and vice versa. These routines are both used
to translate a message, represented as an octet string into a number that
can be encrypted. The encrypted number is then represented as an octet
string for transmission. And the reverse process is performed before and
after decryption to arrive at the original message.

Looking at listing 8.4 we start by computing the number of octets to
process. We convert only the number of octets (n) from the input string
t that will fit in the output multiple precision number T (line 8). On
lines 11 and 12 we initialize d to point to the first available digit in the
output number and c to point to the first octet in the input string.

The main loop starts on line 14, it will be iterated once for each octet
to convert. On line 16 we check if the current digit is full. I.e. if there
no more room for octets. If this is not the first iteration (iteration zero)
and if we are at an even multiple of the number of octets in a digit, then
we should go on to the next digit. Which we do on lines 17 and 18, that
is, we decrease the pointer d to point to the next more significant digit
of T and we zero the digit before filling it with data. On line 21 we
convert the octet (pointed to by c) by shifting it into place and inserting
it in the digit pointed to by d. Last, we decrease the pointer c to point
to the next octet in t.

mp_limb_t
rsa_oi(mp_t T, char *t, mp_size_t t_len)
{

mp_size_t n, i;
5 mp_limb_t *d;

unsigned char *c;

n = t_len > *T * sizeof (mp_limb_t) ?
*T * sizeof (mp_limb_t) : t_len;

10



178 CHAPTER 8. RSA

d = T + *T;
c = t + t_len - 1;

for (i = 0; i < n; i++) {
15

if ((0 == (i % sizeof (mp_limb_t))) && i) {
d--;
*d = 0;

}
20

*d |= *c << (8 * (i % sizeof (mp_limb_t)));
c--;

}

25 for (i = n; i < *T * sizeof (mp_limb_t); i++) {

if ((0 == (i % sizeof (mp_limb_t))) && i) {
d--;
*d = 0;

30 }
}

return n;
}

Listing 8.4: Octet string to multiple precision integer

After the main loop on lines 14 to 22 what remains is to clear the
remaining digits of T , if any. We iterate from n to the number of octets
in T (line 25). If i is nonzero and an even multiple of the number of
octets in a digit (line 27) we decrease the pointer d to point to the next
digit and clear that digit (lines 28 and 29). Finally, we return n, the
number of octets that were converted, and we leave the resulting multiple
precision number in T .

Looking at listing 8.5, first we get the length of the input multiple
precision number T in TL. Then, on line 12 we find the number of octets
in the most significant digit of T . If we closely examine line 12 we see
that first we set l to zero and x to the most sinificant digit of T . Then
we repeat, while x is nonzero. For each iteration we increase l by one
and shift x left one octet (eight bits). Thus, when we exit the loop we
will have the bitlength of the most significant digit of T , in octets, in l.



8.2. RSA IMPLEMENTATION 179

On line 15 we compute the required number of octets to convert T to
an octet string. If the length of the provided output string is less than
what is required then an error is generated (lines 17 to 19). We check
if the length of the output string is longer than the number of octets in
the input data (line 22) and limit the number of iterations accordingly.
On lines 24 and 25 we set up the pointers d and c to point to the current
input digit and current output octet, respectively.

1 mp_limb_t
rsa_io(char *t, mp_size_t t_len, mp_t T)
{

mp_size_t n, i;
mp_size_t TL, L, l;

6 mp_limb_t x;
mp_limb_t *d;
char *c;

TL = mp_len(T);
11

for (l = 0, x = *(T + 1 + *T - TL); x; l++, x >>= 8)
;;

L = (TL - 1) * sizeof (mp_limb_t) + l;
16

if (L > t_len) {

MP_ERR(MP_ERR_RESSIZEOPLEN);
}

21

n = t_len > L ? L : t_len;

d = T + *T;
c = t + n - 1;

26

for (i = 0; i < n; i++) {

if (0 == (i % sizeof (mp_limb_t)) && i) {
d--;

31 }



180 CHAPTER 8. RSA

*c = (*d >> 8 *
(i % sizeof (mp_limb_t))) & 0xff;

c--;
36 }

return n;
}

Listing 8.5: Multiple precision integer to octet string

Then we enter the main loop, lines 27 to 35. First, if this is not the
first iteration (iteration zero) and if we are at an even multiple of the
number of octets in a digit, then we go on to process the next digit (lines
29 and 30). On line 33 we extract the current octet from the current
digit and assign it to ∗c. Finally, we step the pointer c and we are done
with this iteration.

When all iterations are executed, we have the octet string in t and
the number of converted octets is returned in n.



Bibliography

[1] Paranjape, K. P., Some lectures on number theory, elliptic curves
and cryptology.

[2] Brinch Hansen, P., Multiple-length division revisited: a tour of the
minefield, Software – practice and experience 24, June 1994, pp.
579–601, 1994, John Wiley Sons, Ltd.

[3] Riemann, B., On the Number of Prime Numbers less than a Given

Quantity (Über die Anzahl der Primzahlen under einer gegebe-
nen Grösse), Monatsberichte der Berliner Akademie, Nov. 1859,
http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/
EZeta.pdf

[4] Haldir, How to crack a Linear Congruential Generator, source un-
known, http://www.reteam.org/papers/e59.pdf

[5] Park, Stephen, K., Miller, Keith, W., Random number generators:
good ones are hard to find, Communications of the ACM, Oct 1988,
Vol 31, No 10.

[6] Marsaglia, G., Random numbers fall mainly in the planes, Proceed-
ings of the National Academy of Sciences of the United States of
America, June 1968, Vol 61, Issue 1, pp. 25-28.

[7] Goldwasser, S., Bellare, M., Lecture Notes on Cryptography, June
2008, http://www-cse.ucsd.edu/∼mihir/papers/gb.pdf

[8] Eastlake, D., Schiller, J., Crocker, S., Randomness Requirements
for Security, June 2005, IETF, RFC 4086,
http://www.ietf.org/rfc/rfc4086.txt

181



182 BIBLIOGRAPHY

[9] Eastlake, D., Jones, P., US Secure Hash Algorithm 1 (SHA1),
September 2001, IETF, RFC 3174,
http://www.ietf.org/rfc/rfc3174.txt

[10] Secure Hash Standard (SHS), October 2008, National Institute
of Standards and Technology, Information Technology Laboratory,
FIPS 180-3, http://csrc.nist.gov/publications/fips/fips180-3/
fips180-3 final.pdf

[11] Barker, E., Kelsey, J., Recommendations for Random Num-
ber Generation Using Deterministic Random Bit Generators
(Revisited), March 2007, National Institute of Standards and
Technology, Information Technology Laboratory, NIST SP
800-90, http://csrc.nist.gov/publications/nistpubs/800-90/SP800-
90revised March2007.pdf

[12] Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol-
ume 2B: Instruction set reference N-Z, March 2009, Intel.

[13] Geisler, M., Krøig̊ard, M., Danielsen, A., About Random Bits, De-
cember 2004, http://www.cecm.sfu.ca/˜monaganm/teaching/
CryptographyF08/random-bits.pdf

[14] Davis, D., Ihaka, R., Fenstermacher, P., Cryptographic Random-
ness from Air Turbulence in Disk Drives, 1994, Proceedings of the
14th Annual International Cryptology Conference on Advances in
Cryptology, Springer-Verlag,
http://world.std.com/˜dtd/random/forward.ps

[15] Jakobsson, M., Shriver, E., Hillyer, B. K., Juels, A., A Practical
Secure Physical Random Bit Generator, 1998, Proceedings of the
5th ACM Conference on Computer and Communications Security,
ACM Press, http://www.rsa.com/rsalabs/staff/bios/ajuels/
publications/ physicalrand/physicalrand.ps

[16] Junod, P., Cryptographic Secure Random Number Generation: The
Blum-Blum-Shub Generator, August 1999,
http://crypto.junod.info/bbs.pdf

[17] Diffie, W., Hellman, M. E., New Directions in Cryptography, Nov
1976, IEEE Transactions on Information Theory, vol. IT-22, pp.
644-654.



BIBLIOGRAPHY 183

[18] Rivest, R. L., Shamir, A., Adleman, L., On Digital Signatures
and Public Key Cryptosystems, Feb. 1978, Communications of the
ACM, vol. 21, pp. 120-126.

[19] Toms hardware, July 2009, http://www.tomshardware.com/charts/
2009-desktop-cpu-charts/SiSoftware-Sandra-2009-SP3-Processor-
Arithmetic,1389.html

[20] Pomerance, C., A Tale of Two Sieves, December 1996, Notices of
the AMS, http://www.ams.org/notices/199612/pomerance.pdf





Index

accepting states, 25
addition, 40

algorithm, 42
digit position n, 75
implementation, 44
implementation, primitive,

43
long, 41
modulo, 13, 15
multiple precision, 43
primitive, 40, 42
signed, 101
signed, implementation, 101

address, 39
Adleman, Leonard, 167
AES, 139
air turbulence, 140
algorith

trial division, 153
algorithm, 28

addition, 42
binary extended gcd, 111
binary gcd, 107
Blum-Blum-Shub generator,

143
division, 7, 68
Euclid’s, 106

extended gcd, 110
finding small primes, 151
greatest common divisor, 106
Miller-Rabin primality test,

159
MINSTD, 130
modular exponentiation, 118
multiplication, 57
RSA decryption, 176
RSA encryption, 175
RSA key generation, 172
sieve of Eratosthenes, 150
subtraction, 49

algorithmic randomness, 132
alphabet, 23
array

notation, 39
asymptotic notation, 28

Bézout coefficients, 8
Bézout numbers, 8
Bézout’s identity, 8

Bézout, Étienne, 8
base, 33, 38
base change, 35
bias, 137
biased, 127

185



186 INDEX

big O notation, 28
binary, 37
binary digit, 37
binary extended cd

algorithm, 111
binary gcd

algorithm, 107
implementation, 108

binary modular exponentiation,
118

bit, 37
clear, 97
clear, implementation, 98
count, implementation, 100
counting, 97
get, 97
get, implementation, 98
highest, 97
set, 97
set, implementation, 99

bits, 134
Blum-Blum-Shub generator

algorithm, 143
implementation, generation,

146
implementation, initializa-

tion, 144
implementation, seeding, 145
pseudo random number gen-

erator, 143

carry, 41
cell, 4

memory, 39
cells, 24
certificate, 30
Chebyshev, Pafnuty Lvovich, 155
ciphertext, 168
class

NP, 30

NP-complete, 30
NPC, 30, 31
P, 30
polynomial, 29

clear bit, 97
Cobham’s thesis, 30
coin flip, 135
comparison, 89

implementation, 90
complexity

addition, 42
division, 69
multiplication, 57
space, 28
subtraction, 49
time, 28

complexity class, 29, 30
composite, 9, 149
compression, 138
computer, 26, 37

limitations, 37
congruence, 13
conversion, 177
coprime, 9
counting bits, 97
cryptographically secure, 143

datatype, 39
de-skew, 136

compression, 138
discard pairs, 138
exclusive-or, 139
parity, 138

decision problem, 28
decrypt, 168
decryption, 169, 176
dereference, 40
derivable, 24
DES, 139
deterministic Turing machine, 29



INDEX 187

Diffie, Whitfield, 167
discrete probability distribution,

133
distribution

discrete probability, 133
divides, 5
divisibility

divisor, 5
properties, 6

division, 63
addition, digit position n,

75, 76
algorithm, 68
implementation, 82
initialization, 81
long, 65
main loop, 86
main routine, 81
multiple precision, 74, 81
multiply and subtract, 78
normalization, 74
primitive, 63, 69
primitive, implementation,

72
division algorithm, 7
divisor, 5

common, 6
greatest common, 6
quotient, 8

elementary arithmetic, 37
Elements, 9
elements, 3
empty set, 4
encrypt, 168
encryption, 169, 175
entropy, 133

definition, 133
harvesting, 136, 139
minimum, 136

mix, 138
rate, 135
sources, 140

entropy source, 138
equivalence class, 5
equivalence relation, 5
Erathosthenes, 150
error handling, 123

declarations, 123
error message, 125
generating error, 124
handler, 125

estimate
quotient, 68

Euclid, 9
first theorem, 10
lemma, 10
second theorem, 10

Euclid’s algorithm, 106
Euclid’s lemma, 10
Euler totient, 20
Euler’s theorem, 21
Euler, Leonhard Paul, 18
even, 92

implementation, 92
exclusive-or, 139
expansion, 33
extended gcd

algorithm, 110

factor, 5
factoring, 169
factors

prime, 149
Felkel, Anton, 155
Fermat’s little theorem, 17, 158
Fermat, Pierre de, 15
final states, 25
finding large primes, 163

implementation, 164



188 INDEX

Fundamental theorem of arith-
metic, 11

Gauss, Carl Friedrich, 11, 12,
155

general number field sieve, 169
generating large primes, 163

implementation, 164
get bit, 97
global randomness, 128
grammar, 24
greatest common divisor, 6, 105

algorithm, 106
binary extended gcd, 111
binary gcd, 107, 110
implementation, 108, 112

growth rate, 29
guess, 86

h(x), 38
Hadamard, Jacques Salomon, 155
halfword, 38
harvesting entropy, 139
head, 24
Hellman, Martin, 167
highest bit, 97

immediately derivable, 24
implementation, 37

addition, 44
addition, digit position n,

76
addition, signed, 101
binary extended gcd, 112
binary gcd, 108
Blum-Blum-Shub generator,

generation, 146
Blum-Blum-Shub generator,

initialization, 144

Blum-Blum-Shub generator,
seeding, 145

clear bit, 98
comparison, 90
count bits, 100
division, 82
error, declarations, 123
error, generating error, 124
error, handler, 125
error, message, 125
Euclid’s extended algorithm,

112
even, 92
finding large primes, 164
finding small primes, 151
get bit, 98
greatest common divisor, 108
initialization, 126
integer to octet conversion,

177
left shift, 94
length, 93
Miller-Rabin primality test,

160
MINSTD, 131
modular exponentiation, 118
multiplication, 61
multiply and subtract, 79
normalization, 74
octet to integer conversion,

177
odd, 92
primitive addition, 43
primitive division, 72
primitive multiplication, 59
primitive subtraction, 50
RSA decryption, 176
RSA encryption, 175
RSA key generation, 172



INDEX 189

scratch memory, allocating,
122

scratch memory, declarations,
121

scratch memory, initializa-
tion, 121

scratch memory, marking,
122

scratch memory, reclaiming,
123

set bit, 99
shift right, 96
subtraction, 51
subtraction, signed, 103
temporary memory, allocat-

ing, 122
temporary memory, decla-

rations, 121
temporary memory, initial-

ization, 121
temporary memory, mark-

ing, 122
temporary memory, reclaim-

ing, 123
trial division, 151, 153

indistinguishable, 141
infinitude of primes, 10
information, 133
information content, 133, 134
initialization, 125

implementation, 126
instructions, 25
integer, 5
integer to octet conversion, 177
integers, 5
intel, 140

key exchange, 167
key generation, 172
keystrokes, 140

Kleene star, 23
Kolmogorov complexity, 133
Kolmogorov randomness, 132

l(x), 38
language, 24
large primes, finding, 163
least significant, 38, 39
left shift, 94
Legendre, Adrien-Marie, 155
length, 39, 92

implementation, 93
liars, 157
limitations, 37
linear congruential random num-

ber generator, 128
local randomness, 128
long

addition, 41
division, 65
multiplication, 54
subtraction, 48

lucky guess, 29

maximum digit, 38
MD*, 139
Miller-Rabin primality test, 159,

163, 165
algorithm, 159
implementation, 160

minimal standard, 129
minimum entropy, 136
MINSTD, 129

algorithm, 130
implementation, 131

mix, 138
mixing function, 138

encryption, 139
hash, 139
strong, 139



190 INDEX

modular
addition, 15
cancellation, 15
congruence, 13
exponentiation, 117
multiplication, 15
subtraction, 15

modular arithmetic, 12
modular exponentiation, 117

algorithm, 118
implementation, 118

modulo
addition, 13
equivalence relation, 14
exponentiation, 117
multiplication, 14
subtraction, 13

modulus, 169
most significant, 38
multiple precision, 37

addition, 40, 43, 44
addition, signed, 101
comparison, 90
division, 63, 74, 81, 82
equality, 91
even, 92
left shift, 94
multiplication, 53, 60, 61
odd, 92
right shift, 96
subtraction, 47, 50, 51
subtraction, signed, 101, 103

multiple precision arithmetic, 39
multiplication, 53

algorithm, 57
implementation, 61
long, 54
moduli, 15
modulo, 14
multiple precision, 60

primitive, 53, 58
primitive, implementation,

59
multiply and subtract, 78

index, 79

negative number, 35
next bit test, 142
non-deterministic Turing machine,

29
non-terminal, 24
normalization, 74

implementation, 74
normalized, 66, 70
NP, 30
NP-complete, 31
NPC, 30, 31
number, 33
number system, 33
numeral, 33

objective unpredicability, 128
octet to integer conversion, 177
odd, 92

implementation, 92
overflow, 37

P, 30
parity, 136
partition, 4
partitioning relation, 4
period, 128
pointer, 39

dereference, 40
polynomial time, 29
polynomial time indistinguish-

able, 141
positional numeral system, 33

Poussin, Charles-Jean Étienne Gus-
tave Nicolas, 155



INDEX 191

primality test, 149, 150
Miller-Rabin, 159
probabalistic, 157, 159

prime, 9, 149
candidate, 164
composite, 9
coprime, 9
distribution, asymptotic law,

155
Euler’s theorem, 21
factors, 149
Fermat’s little theorem, 17
finding, 149
finding, algorithm, 151
finding, implementation, 151
finding, large, 163
generating, large, 163
probabalistic test, 157, 159
probability, 163
probable, 157, 165
relatively, 9
test, 149, 150, 157

prime number theorem, 155, 163
primitive

addition, 40, 42
addition, implementation,

43
division, 63, 69
division, implementation, 72
multiplication, 53, 58
multiplication, implementa-

tion, 59
subtraction, 47, 49
subtraction, implementation,

50
primitive datatype, 37
primitive operation, 37
primitive operations, 33
private key, 169
probabalistic Turing machine, 141

probability
discrete distribution, 133

probable prime, 157, 165
productions, 24
pseudo random, 142
pseudo random generator, 142
public key, 169
public key cryptosystem, 167

quotient, 63
estimate, 66, 68, 70

quotient digit, 66

random, 127
air turbulence, 140
algorithmic, 132
Blum-Blum-Shub generator,

143
global, 128
Kolmogorov, 132
linear congruential genera-

tor, 128
local, 128
MINSTD, 129
number generator, 140
period, 128
pseudo, 141, 142
pseudo generator, 142
seed, 142
statistically, 128
test, 131
true, 128, 140
truly, 128

random number, 165
randomly, 127
randomness, 127, 136
reducible, 31
reduction, 31
reflexive, 4, 14
relation



192 INDEX

equivalence, 5
modulo, 14
partitioning, 4

relatively prime, 9, 21
remainder, 63
representation, 33

multiple precision integer,
39

rewriting system, 24
Riemann, Georg Friedrich Bern-

hard, 156
right shift, 95
Rivest, Ronald, 167
RSA, 167

decrypt, 168
decryption, 169, 176
encrypt, 168
encryption, 169, 175
implementation, 172
key generation, 172

scratch memory
allocating, 122
declarations, 121
initialization, 121
marking, 122
reclaiming, 123

scratch space, 120
seed, 142
self-information, 134
set, 3

empty, 4
partition, 4

set bit, 97
SHA*, 139
Shamir, Adi, 167
Shannon, Claude Elwood, 134
shift, 93, 95

left, 94
right, 95, 96

sieve of Eratosthenes, 150
algorithm, 150

size, 39
smallest, 5
space complexity, 28
square roots, 157
start state, 25
starting symbol, 24
state, 25

accepting, 25
final, 25
start, 25

state register, 25
statistically random, 128
subset, 4
subtraction, 47

algorithm, 49
implementation, 51
long, 48
modulo, 13, 15
multiple precision, 50
primitive, 47, 49
primitive, implementation,

50
signed, 101
signed, implementation, 103

surprisal, 135
symmetric, 4, 14

table, 25
tape, 24
temperature, 140
temporary memory, 120

allocating, 122
declarations, 121
initialization, 121
marking, 122
reclaiming, 123

terminals, 24
theorem



INDEX 193

Bézout’s identity, 8
base change, 35
divisibility, 6
division algorithm, 7
equivalence relation, 14
Euclid’s lemma, 10
Euler’s theorem, 21
Fermat’s little, 158
Fermat’s little theorem, 17
fundamental theorem of arith-

metic, 11
infinitude of primes, 10
modular addition, 13, 15
modular cancellation, 15
modular multiplication, 14
modular subtraction, 13, 15
multiplying moduli, 15
partitioning relation, 4
prime number, 155, 163
square roots of unity, 157
totient evaluation, 20
unique representation, 33

time complexity, 28
timers

high resolution, 140
totient, 20
totient evaluation, 20
transition function, 25
transitive, 4, 14
trial division, 149, 164, 165

algorithm, 153
implementation, 151, 153

truly random, 128
truncation, 38
Turing machine, 24

deterministic, 29
example, 26
non-deterministic, 29
probabalistic, 141
universal, 132

Turing, Alan Mathison, 26

unbiased, 127
uncertainty, 134–136
underflow, 37
unique representation, 33
universal Turing machine, 132
unsigned number, 37

Vega, Baron Jurij Bartolomej,
155

verifier, 30

well defined, 4
well ordering principle, 5
witness, 157, 159
word, 24
wordsize, 37

maximum, 38
wrap, 37
wraparound, 37

Z, 5




